Interaction between Strong Sound Waves and Cloud Droplets: Theoretical Analysis

Author(s):  
Ying-Hui Jia ◽  
Fang-Fang Li ◽  
Kun Fang ◽  
Guang-Qian Wang ◽  
Jun Qiu

AbstractRecently strong sound wave was proposed to enhance precipitation. The theoretical basis of this proposal has not been effectively studied either experimentally or theoretically. Based on the microscopic parameters of atmospheric cloud physics, this paper solved the complex nonlinear differential equation to show the movement characteristics of cloud droplets under the action of sound waves. The motion process of individual cloud droplet in a cloud layer in the acoustic field is discussed as well as the relative motion between two cloud droplets. The effects of different particle sizes and sound field characteristics on particle motion and collision are studied to analyze the dynamic effects of thunder-level sound waves on cloud droplets. The amplitude of velocity variation has positive correlation with Sound Pressure Level (SPL) and negative correlation with the frequency of the surrounding sound field. Under the action of low-frequency sound waves with sufficient intensity, individual cloud droplets could be forced to oscillate significantly. The droplet smaller than 40μm can be easily driven by sound waves of 50 Hz and 123.4 dB. The calculation of the collision process of two droplets reveals that the disorder of motion for polydisperse droplets is intensified, resulting in the broadening of the collision time range and spatial range. When the acoustic frequency is less than 100Hz (@ 123.4dB) or the Sound Pressure Level (SPL) is greater than 117.4dB (@ 50Hz), the sound wave can affect the collision of cloud droplets significantly. This study provides theoretical perspective of acoustic effect to the microphysics of atmospheric clouds.

Author(s):  
Fuyou He ◽  
li jiawei_hust ◽  
Chuan Li ◽  
Pengyu Wang ◽  
Zutao Wang ◽  
...  

Abstract As an efficient approach to improve the visibility, defogging technology is essential for the operation of ports and airports. This paper proposes a new and hybrid defogging technology, i.e. electric–acoustic defogging method. Specifically, the droplets are charged by corona discharge, which is beneficial to overcome the hydrodynamic interaction force to improve the droplet collision efficiency. Meanwhile, sound waves (especially acoustic turbulence) promote the relative movement of droplets to increase the collision probability. In this study, the effects of acoustic frequency ( f ), sound pressure level (SPL), and voltage (V) on the droplet growth ratio were studied by orthogonal design analysis. The results of difference analysis and multi-factor variance analysis show that frequency and sound pressure level are the dominant factors that affect the collision of droplets, and the effect of voltage is relatively weak. And f = 400 Hz, SPL = 132 dB, and V = -7.2 kV are the optimal parameters in our experiment. In addition, we further studied the impact of single factor on droplet growth ratio. The results show that there is an optimal frequency of 400 Hz. That is, the impact of frequency is non-linear. The droplet growth ratio increases with sound pressure level and voltage level. The new technology proposed in this paper can provide a new approach for defogging in open space.


2021 ◽  
Vol 8 (01) ◽  
pp. 63-67
Author(s):  
Zahoor Ullah ◽  
◽  
Hassan Ahmed ◽  
Kareem Akhtar ◽  
◽  
...  

The reduction of noise emitted from the exhaust of internal combustion engine is a real challenge for all automotive industries. Mufflers are designed to reflect sound waves produced by the engine in such a way to cancel the effect of each other by destructive interference between the incoming waves from engine cylinder and reflected waves from the muffler of the 2 stroke motorbike engine. Numerical simulation is carried out to study the sound pressure level (SPL) and flow variable like velocity and pressure of conventional and proposed modified reactive muffler.


2020 ◽  
Vol 34 (14) ◽  
pp. 2050145
Author(s):  
Rennian Li ◽  
Wenna Liang ◽  
Wei Han ◽  
Hui Quan ◽  
Rong Guo ◽  
...  

In order to investigate the turbulence-induced acoustic characteristics of hydrofoils, the flow and sound field for a model NH-15-18-1 asymmetric hydrofoil were calculated based on the mixed method of large eddy simulation (LES) with Lighthill analogy theory. Unsteady fluid turbulent stress source around the hydrofoil were selected as the inducements of quadrupole sound. The average velocity along the mainstream direction was calculated for different Reynolds numbers [Formula: see text]. Compared to experimental measurements, good agreement was seen over a range of [Formula: see text]. The results showed that the larger the [Formula: see text], the larger the vortex intensity, the shorter the vortex initial shedding position to the leading edge of the hydrofoil, and the higher the vortex shedding frequency [Formula: see text]. The maximum sound pressure level (SPL) of the hydrofoil was located at the trailing edge and wake of the hydrofoil, which coincided with the velocity curl [Formula: see text] distribution of the flow field. The maximum SPL of the sound field was consistent with the location of the vortex shedding. There were quadratic positive correlations between the total sound pressure level (TSPL) and the maximum value of the vortex intensity [Formula: see text] and velocity curl, which verified that shedding and diffusion of vortices are the fundamental cause of the generation of the quadrupole source noise.


Author(s):  
S.A. Gagarin ◽  
O.V. Gagarina ◽  
Omar Hazza Al-Subari

The conditions of acoustic wave formation under urban development within traffic roundabouts are considered on the example of Izhevsk. The article refers to 5 single-level road interchanges, and provides the results of multiple acoustic measurements of the equivalent sound pressure level. The observations covered a different time range, typical for the daytime period. The average values vary from 66 to 68 dBA, and the maximum values range from 67 to 69 dBA. Based on the simulation results, acoustic discomfort zones were determined for each interchange. The variation was from 50 to 75 meters at averaged values of flows intensity (up to 1500 u / h) and from 60 to 110 meters at high intensity (up to 2000 u / h). The conclusion is made about the favorability of roundabouts from the position of noise comfort in comparison with traditional intersections equipped with traffic lights. The effectiveness of such measures is 2-3 dB.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 777 ◽  
Author(s):  
Zhengwei Yang ◽  
Huihua Feng ◽  
Bingjie Ma ◽  
Ammar Abdualrahim Alnor Khalifa

Traditional acoustic evaluation of a diesel engine generally uses the A-weighted sound pressure level (AWSPL) and radiated sound power to assess the noise of an engine prototype present in an experiment. However, this cannot accurately and comprehensively reflect the auditory senses of human subjects during the simulation stage. To overcome such shortage, the Moore–Glasberg loudness and sharpness approach is applied to evaluate and improve the sound quality (SQ) of a 16 V-type marine diesel engine, and synthesizing noise audio files. Through finite element (FE) simulations, the modes of the engine’s block and the average vibrational velocity of the entire engine surface were calculated and compared with the test results. By further applying an automatically matched layer (AML) approach, the engine-radiated sound pressure level (SPL) and sound power contributions of all engine parts were obtained. By analyzing the Moore–Glasberg loudness and sharpness characteristics of three critical sound field points, an improvement strategy of the oil sump was then proposed. After improvement, both the loudness and sharpness decreased significantly. To verify the objective SQ evaluation results, ten noise audio clips of the diesel engine were then synthesized and tested. The subjective evaluation results were in accordance with the simulated analysis. Therefore, the proposed approach to analyze and improve the SQ of a diesel engine is reliable and effective.


2020 ◽  
Vol 37 (9) ◽  
pp. 1539-1550 ◽  
Author(s):  
Fang-Fang Li ◽  
Ying-Hui Jia ◽  
Guang-Qian Wang ◽  
Jun Qiu

AbstractSound waves have proven to be effective in promoting the interaction and aggregation of droplets. It is necessary to theoretically study the motion of particles in a sound field to develop new acoustic technology for precipitation enhancement. In this paper, the motion of cloud droplets due to a traveling sound wave field emitted from the ground to the air is simulated using the motion equation of point particles. The force condition of the particles in the oscillating flow field is analyzed. Meanwhile, the effects of droplet size, sound frequency, and sound pressure level (SPL) on the velocity and displacement of the droplets are also investigated. The results show that Stokes force and gravity play a dominant role in the falling process of cloud droplets, and the effect of the sound wave is mainly reflected in the fluctuation of velocity and displacement, which also promotes the displacement of cloud droplets to a certain extent. The maximum displacement increments of cloud droplets of 10 µm can reach 9200 µm due to the action of sound waves of 50 Hz and 143.4 dB. The SPL required for a noticeable velocity fluctuation for droplets of 10 µm with frequency of 50 Hz is 88.2 dB. When SPL < 100 dB and frequency > 500 Hz, the effect is negligible. The cloud droplet size plays a significant role in the motion, and the sound action is weaker for larger particles. For a smaller sound frequency and higher SPL, the effect of the sound wave is more prominent.


2014 ◽  
Vol 1082 ◽  
pp. 517-520
Author(s):  
Da Lin Chen ◽  
Nan Chen

This paper demonstrates an investigation about the active control of sound radiation in the enclosure cavity consists of two flexible plates. One of the flexible plates is driven by a point force to generate the primary sound field in the cavity, and using some point forces which are located at different locations on the receiving plate to suppressing the panel vibration and then to minimum the cavity sound pressure level (SPL); meanwhile some actuators are located on the other panel surfaces to reduce the sound pressure level at some frequencies that can’t be well reduced by only effect on one panel. The better result shows the possibility of applying distributed cooperative control method to the structural-acoustic coupled system.


Sign in / Sign up

Export Citation Format

Share Document