scholarly journals Possible Dynamical Mechanisms for Southern Hemisphere Climate Change due to the Ozone Hole

2012 ◽  
Vol 69 (10) ◽  
pp. 2917-2932 ◽  
Author(s):  
Andrew Orr ◽  
Thomas J. Bracegirdle ◽  
J. Scott Hosking ◽  
Thomas Jung ◽  
Joanna D. Haigh ◽  
...  

Abstract The authors report a hypothesis for the dynamical mechanisms responsible for the strengthening of the Southern Hemisphere circumpolar winds from the lower stratosphere to the surface due to the ozone hole. A general circulation model forced by stratospheric ozone depletion representative of the ozone hole period successfully reproduced these observed changes. Investigation of the dynamical characteristics of the model therefore provides some insight into the actual mechanisms. From this the authors suggest the following: 1) An initial (radiative) strengthening of the lower-stratospheric winds as a result of ozone depletion conditions the polar vortex so that fewer planetary waves propagate up from the troposphere, resulting in weaker planetary wave driving. 2) This causes further strengthening of the vortex, which results in an additional reduction in upward-propagating planetary waves and initiates a positive feedback mechanism in which the weaker wave driving and the associated strengthened winds are drawn downward to the tropopause. 3) In the troposphere the midlatitude jet shifts poleward in association with increases in the synoptic wave fluxes of heat and momentum, which are the result of a positive feedback mechanism consisting of two components: 4) increases in low-level baroclinicity, and the subsequent generation of baroclinic activity (associated with a poleward heat flux), are collocated with the jet latitudinal position, and 5) strengthening anticyclonic shear increases the refraction of wave activity equatorward (associated with a poleward momentum flux). Finally, 6) confinement of planetary waves in the high-latitude troposphere is an important step to couple the stratospheric changes to the tropospheric response.

2005 ◽  
Vol 62 (6) ◽  
pp. 1947-1961 ◽  
Author(s):  
Harun A. Rashid ◽  
Ian Simmonds

Abstract The southern annular mode is the leading mode of Southern Hemisphere circulation variability, the temporal evolution of which is characterized by large amplitudes and significant persistence. Previous investigators have suggested a positive feedback mechanism that explains some of this low-frequency variance. Here, a mechanism is proposed, involving transient nonmodal growths of the anomalies, that is at least as effective as the positive feedback mechanism in increasing the low-frequency variance of the southern annular mode. Using the vector autoregressive modeling technique, a number of linear inverse models of southern annular mode variability from National Centers for Environmental Prediction–Department of Energy (NCEP–DOE) Reanalysis 2 is derived. These models are then analyzed applying the ideas of the generalized stability theory. It is found that, as a consequence of the nonnormality of the system matrices, a significant increase in the low-frequency variance of the southern annular mode occurs through optimal nonmodal growth of the zonal wind anomalies. The nonnormality arises mainly from the relative dominance of the eddy forcing, while the nonmodal growth is caused by the interference of the nonorthogonal eigenvectors of the nonnormal system matrix. These results are demonstrated first in a simple model that retains only the two leading modes of the zonally averaged zonal wind and eddy-forcing variability, and then in a more general model that includes all the important modes. Using the more general model the authors have determined, among other things, the optimal initial perturbation and the time scale over which it experiences the maximum nonmodal growth to evolve into the pattern associated with the southern annular mode.


2011 ◽  
Vol 24 (3) ◽  
pp. 795-812 ◽  
Author(s):  
Lorenzo M. Polvani ◽  
Darryn W. Waugh ◽  
Gustavo J. P. Correa ◽  
Seok-Woo Son

Abstract The importance of stratospheric ozone depletion on the atmospheric circulation of the troposphere is studied with an atmospheric general circulation model, the Community Atmospheric Model, version 3 (CAM3), for the second half of the twentieth century. In particular, the relative importance of ozone depletion is contrasted with that of increased greenhouse gases and accompanying sea surface temperature changes. By specifying ozone and greenhouse gas forcings independently, and performing long, time-slice integrations, it is shown that the impacts of ozone depletion are roughly 2–3 times larger than those associated with increased greenhouse gases, for the Southern Hemisphere tropospheric summer circulation. The formation of the ozone hole is shown to affect not only the polar tropopause and the latitudinal position of the midlatitude jet; it extends to the entire hemisphere, resulting in a broadening of the Hadley cell and a poleward extension of the subtropical dry zones. The CAM3 results are compared to and found to be in excellent agreement with those of the multimodel means of the recent Coupled Model Intercomparison Project (CMIP3) and Chemistry–Climate Model Validation (CCMVal2) simulations. This study, therefore, strongly suggests that most Southern Hemisphere tropospheric circulation changes, in austral summer over the second half of the twentieth century, have been caused by polar stratospheric ozone depletion.


2014 ◽  
Vol 27 (3) ◽  
pp. 1336-1342 ◽  
Author(s):  
Michael Sigmond ◽  
John C. Fyfe

Abstract It has been suggested that the increase of Southern Hemisphere sea ice extent since the 1970s can be explained by ozone depletion in the Southern Hemisphere stratosphere. In a previous study, the authors have shown that in a coupled atmosphere–ocean–sea ice model the ozone hole does not lead to an increase but to a decrease in sea ice extent. Here, the robustness of this result is established through the analysis of models from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). Comparison of the mean sea ice trends in CMIP3 models with and without time-varying stratospheric ozone suggests that ozone depletion is associated with decreased sea ice extent, and ozone recovery acts to mitigate the future sea ice decrease associated with increasing greenhouse gases. All available historical simulations with CMIP5 models that were designed to isolate the effect of time-varying ozone concentrations show decreased sea ice extent in response to historical ozone trends. In most models, the historical sea ice extent trends are mainly driven by historical greenhouse gas forcing, with ozone forcing playing a secondary role.


2017 ◽  
Author(s):  
Hannah M. Horowitz ◽  
Daniel J. Jacob ◽  
Yanxu Zhang ◽  
Theodore S. Dibble ◽  
Franz Slemr ◽  
...  

Abstract. Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg0. Oxidation to water-soluble HgII controls Hg deposition to ecosystems. Here we implement a new mechanism for atmospheric Hg0 / HgII redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling of GEOS-Chem to an ocean general circulation model (MITgcm), enabling a global 3-D representation of atmosphere-ocean Hg0 / HgII cycling. We find that atomic bromine (Br) of marine organobromine origin is the main atmospheric Hg0 oxidant, and that second-stage HgBr oxidation is mainly by the NO2 and HO2 radicals. The resulting lifetime of tropospheric Hg0 against oxidation is 2.7 months, shorter than in previous models. Fast HgII atmospheric reduction must occur in order to match the ~ 6-month lifetime of Hg against deposition implied by the observed atmospheric variability of total gaseous mercury (TGM ≡ Hg0 + HgII(g)). We implement this reduction in GEOS-Chem as photolysis of aqueous-phase HgII-organic complexes in aerosols and clouds, resulting in a TGM lifetime of 5.2 months against deposition and matching both mean observed TGM and its variability. Model sensitivity analysis shows that the interhemispheric gradient of TGM, previously used to infer a longer Hg lifetime against deposition, is misleading because southern hemisphere Hg mainly originates from oceanic emissions rather than transport from the northern hemisphere. The model reproduces the observed seasonal TGM variation at northern mid-latitudes (maximum in February, minimum in September) driven by chemistry and oceanic evasion, but does not reproduce the lack of seasonality observed at southern hemisphere marine sites. Aircraft observations in the lowermost stratosphere show a strong TGM-ozone relationship indicative of fast Hg0 oxidation, but we show that this relationship provides only a weak test of Hg chemistry because it is also influenced by mixing. The model reproduces observed Hg wet deposition fluxes over North America, Europe, and China, including the maximum over the US Gulf Coast driven by HgBr oxidation by NO2 and HO2. Low Hg wet deposition observed over rural China is attributed to fast HgII reduction in the presence of high organic aerosol concentrations. We find that 80 % of global HgII deposition takes place over the oceans, reflecting the marine origin of Br and low concentrations of marine organics for HgII reduction, and most of HO2 and NO2 for second-stage HgBr oxidation.


2018 ◽  
Vol 294 (5) ◽  
pp. 1437-1450 ◽  
Author(s):  
Cai Liang ◽  
Zhenlei Zhang ◽  
Qinfu Chen ◽  
Haiyan Yan ◽  
Miao Zhang ◽  
...  

The inner centromere region of a mitotic chromosome critically regulates sister chromatid cohesion and kinetochore–microtubule attachments. However, the molecular mechanism underlying inner centromere assembly remains elusive. Here, using CRISPR/Cas9-based gene editing in HeLa cells, we disrupted the interaction of Shugoshin 1 (Sgo1) with histone H2A phosphorylated on Thr-120 (H2ApT120) to selectively release Sgo1 from mitotic centromeres. Interestingly, cells expressing the H2ApT120-binding defective mutant of Sgo1 have an elevated rate of chromosome missegregation accompanied by weakened centromeric cohesion and decreased centromere accumulation of the chromosomal passenger complex (CPC), an integral part of the inner centromere and a key player in the correction of erroneous kinetochore–microtubule attachments. When artificially tethered to centromeres, a Sgo1 mutant defective in binding protein phosphatase 2A (PP2A) is not able to support proper centromeric cohesion and CPC accumulation, indicating that the Sgo1–PP2A interaction is essential for the integrity of mitotic centromeres. We further provide evidence indicating that Sgo1 protects centromeric cohesin to create a binding site for the histone H3–associated protein kinase Haspin, which not only inhibits the cohesin release factor Wapl and thereby strengthens centromeric cohesion but also phosphorylates histone H3 at Thr-3 to position CPC at inner centromeres. Taken together, our findings reveal a positive feedback–based mechanism that ensures proper assembly of the functional inner centromere during mitosis. They further suggest a causal link between centromeric cohesion defects and chromosomal instability in cancer cells.


2015 ◽  
Vol 112 (15) ◽  
pp. 4678-4683 ◽  
Author(s):  
Yu Shi ◽  
Jianquan Chen ◽  
Courtney M. Karner ◽  
Fanxin Long

Hedgehog (Hh) signaling is essential for osteoblast differentiation in the endochondral skeleton during embryogenesis. However, the molecular mechanism underlying the osteoblastogenic role of Hh is not completely understood. Here, we report that Hh markedly induces the expression of insulin-like growth factor 2 (Igf2) that activates the mTORC2-Akt signaling cascade during osteoblast differentiation. Igf2-Akt signaling, in turn, stabilizes full-length Gli2 through Serine 230, thus enhancing the output of transcriptional activation by Hh. Importantly, genetic deletion of the Igf signaling receptor Igf1r specifically in Hh-responding cells diminishes bone formation in the mouse embryo. Thus, Hh engages Igf signaling in a positive feedback mechanism to activate the osteogenic program.


2015 ◽  
Vol 15 (13) ◽  
pp. 19161-19196
Author(s):  
K. A. Stone ◽  
O. Morgenstern ◽  
D. J. Karoly ◽  
A. R. Klekociuk ◽  
W. J. R. French ◽  
...  

Abstract. Chemistry climate models are important tools for addressing interactions of composition and climate in the Earth System. In particular, they are used for assessing the combined roles of greenhouse gases and ozone in Southern Hemisphere climate and weather. Here we present an evaluation of the Australian Community Climate and Earth System Simulator-Chemistry Climate Model, focusing on the Southern Hemisphere and the Australian region. This model is used for the Australian contribution to the international Chemistry-Climate Model Initiative, which is soliciting hindcast, future projection and sensitivity simulations. The model simulates global total column ozone (TCO) distributions accurately, with a slight delay in the onset and recovery of springtime Antarctic ozone depletion, and consistently higher ozone values. However, October averaged Antarctic TCO from 1960 to 2010 show a similar amount of depletion compared to observations. A significant innovation is the evaluation of simulated vertical profiles of ozone and temperature with ozonesonde data from Australia, New Zealand and Antarctica from 38 to 90° S. Excess ozone concentrations (up to 26.4 % at Davis during winter) and stratospheric cold biases (up to 10.1 K at the South Pole) outside the period of perturbed springtime ozone depletion are seen during all seasons compared to ozonesondes. A disparity in the vertical location of ozone depletion is seen: centered around 100 hPa in ozonesonde data compared to above 50 hPa in the model. Analysis of vertical chlorine monoxide profiles indicates that colder Antarctic stratospheric temperatures (possibly due to reduced mid-latitude heat flux) are artificially enhancing polar stratospheric cloud formation at high altitudes. The models inability to explicitly simulated supercooled ternary solution may also explain the lack of depletion at lower altitudes. The simulated Southern Annular Mode (SAM) index compares well with ERA-Interim data. Accompanying these modulations of the SAM, 50 hPa zonal wind differences between 2001–2010 and 1979–1998 show increasing zonal wind strength southward of 60° S during December for both the model simulations and ERA-Interim data. These model diagnostics shows that the model reasonably captures the stratospheric ozone driven chemistry-climate interactions important for Australian climate and weather while highlighting areas for future model development.


Sign in / Sign up

Export Citation Format

Share Document