AMSU-B Observations of Mixed-Phase Clouds over Land

2005 ◽  
Vol 44 (1) ◽  
pp. 72-85 ◽  
Author(s):  
M. N. Deeter ◽  
J. Vivekanandan

Abstract Measurements from passive microwave satellite instruments such as the Advanced Microwave Sounding Unit B (AMSU-B) are sensitive to both liquid and ice cloud particles. Radiative transfer modeling is exploited to simulate the response of the AMSU-B instrument to mixed-phase clouds over land. The plane-parallel radiative transfer model employed for the study accounts for scattering and absorption from cloud ice as well as absorption and emission from trace gases and cloud liquid. The radiative effects of mixed-phase clouds on AMSU-B window channels (i.e., 89 and 150 GHz) and water vapor line channels (i.e., 183 ± 1, 3, and 7 GHz) are studied. Sensitivities to noncloud parameters, including surface temperature, surface emissivity, and atmospheric temperature and water vapor profiles, are also quantified. Modeling results indicate that both cloud phases generally have significant radiative effects and that the 150- and 183 ± 7-GHz channels are typically the most sensitive channels to integrated cloud properties (i.e., liquid water path and ice water path). However, results also indicate that AMSU-B measurements alone are probably insufficient for retrieving all mixed-phase cloud properties of interest. These results are supported by comparisons of AMSU-B observations of a mixed-phase cloud over the Atmospheric Radiation Measurement (ARM) Program’s Southern Great Plains (SGP) site with corresponding calculated clear-sky values.

2020 ◽  
Vol 13 (1) ◽  
pp. 116
Author(s):  
Lucie Leonarski ◽  
Laurent C.-Labonnote ◽  
Mathieu Compiègne ◽  
Jérôme Vidot ◽  
Anthony J. Baran ◽  
...  

The present study aims to quantify the potential of hyperspectral thermal infrared sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the future IASI next generation (IASI-NG) for retrieving the ice cloud layer altitude and thickness together with the ice water path. We employed the radiative transfer model Radiative Transfer for TOVS (RTTOV) to simulate cloudy radiances using parameterized ice cloud optical properties. The radiances have been computed from an ice cloud profile database coming from global operational short-range forecasts at the European Center for Medium-range Weather Forecasts (ECMWF) which encloses the normal conditions, typical variability, and extremes of the atmospheric properties over one year (Eresmaa and McNally (2014)). We performed an information content analysis based on Shannon’s formalism to determine the amount and spectral distribution of the information about ice cloud properties. Based on this analysis, a retrieval algorithm has been developed and tested on the profile database. We considered the signal-to-noise ratio of each specific instrument and the non-retrieved atmospheric and surface parameter errors. This study brings evidence that the observing system provides information on the ice water path (IWP) as well as on the layer altitude and thickness with a convergence rate up to 95% and expected errors that decrease with cloud opacity until the signal saturation is reached (satisfying retrievals are achieved for clouds whose IWP is between about 1 and 300 g/m2).


2013 ◽  
Vol 13 (11) ◽  
pp. 5489-5504 ◽  
Author(s):  
C. Spyrou ◽  
G. Kallos ◽  
C. Mitsakou ◽  
P. Athanasiadis ◽  
C. Kalogeri ◽  
...  

Abstract. Mineral dust aerosols exert a significant effect on both solar and terrestrial radiation. By absorbing and scattering, the solar radiation aerosols reduce the amount of energy reaching the surface. In addition, aerosols enhance the greenhouse effect by absorbing and emitting outgoing longwave radiation. Desert dust forcing exhibits large regional and temporal variability due to its short lifetime and diverse optical properties, further complicating the quantification of the direct radiative effect (DRE). The complexity of the links and feedbacks of dust on radiative transfer indicate the need for an integrated approach in order to examine these impacts. In order to examine these feedbacks, the SKIRON limited area model has been upgraded to include the RRTMG (Rapid Radiative Transfer Model – GCM) radiative transfer model that takes into consideration the aerosol radiative effects. It was run for a 6 year period. Two sets of simulations were performed, one without the effects of dust and the other including the radiative feedback. The results were first evaluated using aerosol optical depth data to examine the capabilities of the system in describing the desert dust cycle. Then the aerosol feedback on radiative transfer was quantified and the links between dust and radiation were studied. The study has revealed a strong interaction between dust particles and solar and terrestrial radiation, with several implications on the energy budget of the atmosphere. A profound effect is the increased absorption (in the shortwave and longwave) in the lower troposphere and the induced modification of the atmospheric temperature profile. These feedbacks depend strongly on the spatial distribution of dust and have more profound effects where the number of particles is greater, such as near their source.


2022 ◽  
pp. 1-48
Author(s):  
Yi Ming

Abstract A negative shortwave cloud feedback associated with higher extratropical liquid water content in mixed-phase clouds is a common feature of global warming simulations, and multiple mechanisms have been hypothesized. A set of process-level experiments performed with an idealized global climate model (a dynamical core with passive water and cloud tracers and full Rotstayn-Klein single-moment microphysics) show that the common picture of the liquid water path (LWP) feedback in mixed-phase clouds being controlled by the amount of ice susceptible to phase change is not robust. Dynamic condensate processes—rather than static phase partitioning—directly change with warming, with varied impacts on liquid and ice amounts. Here, three principal mechanisms are responsible for the LWP response, namely higher adiabatic cloud water content, weaker liquid-to-ice conversion through the Bergeron-Findeisen process, and faster melting of ice and snow to rain. Only melting is accompanied by a substantial loss of ice, while the adiabatic cloud water content increase gives rise to a net increase in ice water path (IWP) such that total cloud water also increases without an accompanying decrease in precipitation efficiency. Perturbed parameter experiments with a wide range of climatological LWP and IWP demonstrate a strong dependence of the LWP feedback on the climatological LWP and independence from the climatological IWP and supercooled liquid fraction. This idealized setup allows for a clean isolation of mechanisms and paints a more nuanced picture of the extratropical mixed-phase cloud water feedback than simple phase change.


2009 ◽  
Vol 9 (19) ◽  
pp. 7397-7417 ◽  
Author(s):  
M. W. Shephard ◽  
S. A. Clough ◽  
V. H. Payne ◽  
W. L. Smith ◽  
S. Kireev ◽  
...  

Abstract. Presented here are comparisons between the Infrared Atmospheric Sounding instrument (IASI) and the "Line-By-Line Radiative Transfer Model" (LBLRTM). Spectral residuals from radiance closure studies during the IASI JAIVEx validation campaign provide insight into a number of spectroscopy issues relevant to remote sounding of temperature, water vapor and trace gases from IASI. In order to perform quality IASI trace gas retrievals, the temperature and water vapor fields must be retrieved as accurately as possible. In general, the residuals in the CO2 ν2 region are of the order of the IASI instrument noise. However, outstanding issues with the CO2 spectral regions remain. There is a large residual ~−1.7 K in the 667 cm−1 Q-branch, and residuals in the CO2 ν2 and N2O/CO2 ν3 spectral regions that sample the troposphere are inconsistent, with the N2O/CO2 ν3 region being too negative (warmer) by ~0.7 K. Residuals on this lower wavenumber side of the CO2 ν3 band will be improved by line parameter updates, while future efforts to reduce the residuals reaching ~−0.5 K on the higher wavenumber side of the CO2 ν3 band will focus on addressing limitations in the modeling of the CO2 line shape (line coupling and duration of collision) effects. Brightness temperature residuals from the radiance closure studies in the ν2 water vapor band have standard deviations of ~0.2–0.3 K with some large peak residuals reaching ±0.5–1.0 K. These are larger than the instrument noise indicating that systematic errors still remain. New H2O line intensities and positions have a significant impact on the retrieved water vapor, particularly in the upper troposphere where the water vapor retrievals are 10% drier when using line intensities compared with HITRAN 2004. In addition to O3, CH4, and CO, of the IASI instrument combined with an accurate forward model allows for the detection of minor species with weak atmospheric signatures in the nadir radiances, such as HNO3 and OCS.


2017 ◽  
Vol 10 (12) ◽  
pp. 4747-4759 ◽  
Author(s):  
Rintaro Okamura ◽  
Hironobu Iwabuchi ◽  
K. Sebastian Schmidt

Abstract. Three-dimensional (3-D) radiative-transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. The challenge is that 3-D effects manifest themselves across multiple satellite pixels, which traditional single-pixel approaches cannot capture. In this study, we present two multi-pixel retrieval approaches based on deep learning, a technique that is becoming increasingly successful for complex problems in engineering and other areas. Specifically, we use deep neural networks (DNNs) to obtain multi-pixel estimates of cloud optical thickness and column-mean cloud droplet effective radius from multispectral, multi-pixel radiances. The first DNN method corrects traditional bispectral retrievals based on the plane-parallel homogeneous cloud assumption using the reflectances at the same two wavelengths. The other DNN method uses so-called convolutional layers and retrieves cloud properties directly from the reflectances at four wavelengths. The DNN methods are trained and tested on cloud fields from large-eddy simulations used as input to a 3-D radiative-transfer model to simulate upward radiances. The second DNN-based retrieval, sidestepping the bispectral retrieval step through convolutional layers, is shown to be more accurate. It reduces 3-D radiative-transfer effects that would otherwise affect the radiance values and estimates cloud properties robustly even for optically thick clouds.


2015 ◽  
Vol 72 (1) ◽  
pp. 430-451 ◽  
Author(s):  
Virendra P. Ghate ◽  
Mark A. Miller ◽  
Bruce A. Albrecht ◽  
Christopher W. Fairall

Abstract Stratocumulus-topped boundary layers (STBLs) observed in three different regions are described in the context of their thermodynamic and radiative properties. The primary dataset consists of 131 soundings from the southeastern Pacific (SEP), 90 soundings from the island of Graciosa (GRW) in the North Atlantic, and 83 soundings from the U.S. Southern Great Plains (SGP). A new technique that makes an attempt to preserve the depths of the sublayers within an STBL is proposed for averaging the profiles of thermodynamic and radiative variables. A one-dimensional radiative transfer model known as the Rapid Radiative Transfer Model was used to compute the radiative fluxes within the STBL. The SEP STBLs were characterized by a stronger and deeper inversion, together with thicker clouds, lower free-tropospheric moisture, and higher radiative flux divergence across the cloud layer, as compared to the GRW STBLs. Compared to the STBLs over the marine locations, the STBLs over SGP had higher wind shear and a negligible (−0.41 g kg−1) jump in mixing ratio across the inversion. Despite the differences in many of the STBL thermodynamic parameters, the differences in liquid water path at the three locations were statistically insignificant. The soundings were further classified as well mixed or decoupled based on the difference between the surface and cloud-base virtual potential temperature. The decoupled STBLs were deeper than the well-mixed STBLs at all three locations. Statistically insignificant differences in surface latent heat flux (LHF) between well-mixed and decoupled STBLs suggest that parameters other than LHF are responsible for producing decoupling.


1995 ◽  
Vol 13 (4) ◽  
pp. 413-418 ◽  
Author(s):  
J. P. F. Fortuin ◽  
R. van Dorland ◽  
W. M. F. Wauben ◽  
H. Kelder

Abstract. With a radiative transfer model, assessments are made of the radiative forcing in northern mid-latitudes due to aircraft emissions up to 1990. Considered are the direct climate effects from the major combustion products carbon dioxide, nitrogen dioxide, water vapor and sulphur dioxide, as well as the indirect effect of ozone production from NOx emissions. Our study indicates a local radiative forcing at the tropopause which should be negative in summer (–0.5 to 0.0 W/m2) and either negative or positive in winter (–0.3 to 0.2 W/m2). To these values the indirect effect of contrails has to be added, which for the North Atlantic Flight Corridor covers the range –0.2 to 0.3 W/m2 in summer and 0.0 to 0.3 W/m2 in winter. Apart from optically dense non-aged contrails during summer, negative forcings are due to solar screening by sulphate aerosols. The major positive contributions come from contrails, stratospheric water vapor in winter and ozone in summer. The direct effect of NO2 is negligible and the contribution of CO2 is relatively small.


2013 ◽  
Vol 52 (3) ◽  
pp. 710-726 ◽  
Author(s):  
Chenxi Wang ◽  
Ping Yang ◽  
Steven Platnick ◽  
Andrew K. Heidinger ◽  
Bryan A. Baum ◽  
...  

AbstractA computationally efficient high-spectral-resolution cloudy-sky radiative transfer model (HRTM) in the thermal infrared region (700–1300 cm−1, 0.1 cm−1 spectral resolution) is advanced for simulating the upwelling radiance at the top of atmosphere and for retrieving cloud properties. A precomputed transmittance database is generated for simulating the absorption contributed by up to seven major atmospheric absorptive gases (H2O, CO2, O3, O2, CH4, CO, and N2O) by using a rigorous line-by-line radiative transfer model (LBLRTM). Both the line absorption of individual gases and continuum absorption are included in the database. A high-spectral-resolution ice particle bulk scattering properties database is employed to simulate the radiation transfer within a vertically nonisothermal ice cloud layer. Inherent to HRTM are sensor spectral response functions that couple with high-spectral-resolution measurements in the thermal infrared regions from instruments such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer. When compared with the LBLRTM and the discrete ordinates radiative transfer model (DISORT), the root-mean-square error of HRTM-simulated single-layer cloud brightness temperatures in the thermal infrared window region is generally smaller than 0.2 K. An ice cloud optical property retrieval scheme is developed using collocated AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) data. A retrieval method is proposed to take advantage of the high-spectral-resolution instrument. On the basis of the forward model and retrieval method, a case study is presented for the simultaneous retrieval of ice cloud optical thickness τ and effective particle size Deff that includes a cloud-top-altitude self-adjustment approach to improve consistency with simulations.


Sign in / Sign up

Export Citation Format

Share Document