The Latitudinal Dependence of Atmospheric Jet Scales and Macroturbulent Energy Cascades

2015 ◽  
Vol 72 (10) ◽  
pp. 3891-3907 ◽  
Author(s):  
Rei Chemke ◽  
Yohai Kaspi

Abstract The latitudinal width of atmospheric eddy-driven jets and scales of macroturbulence are examined latitude by latitude over a wide range of rotation rates using a high-resolution idealized GCM. It is found that for each latitude, through all rotation rates, the jet spacing scales with the Rhines scale. These simulations show the presence of a “supercriticality latitude” within the baroclinic zone, where poleward (equatorward) of this latitude, the Rhines scale is larger (smaller) than the Rossby deformation radius. Poleward of this latitude, a classic geostrophic turbulence picture appears with a − spectral slope of inverse cascade from the deformation radius up to the Rhines scale. A shallower slope than the −3 slope of enstrophy cascade is found from the deformation radius down to the viscosity scale as a result of the broad input of baroclinic eddy kinetic energy. At these latitudes, eddy–eddy interactions transfer barotropic eddy kinetic energy from the input scales of baroclinic eddy kinetic energy up to the jet scale and down to smaller scales. For the Earth case, this latitude is outside the baroclinic zone and therefore an inverse cascade does not appear. Equatorward of the supercriticality latitude, the − slope of inverse cascade vanishes, eddy–mean flow interactions play an important role in the balance, and the spectrum follows a −3 slope from the Rhines scale down to smaller scales, similar to what is observed on Earth. Moreover, the length scale of the energy-containing zonal wavenumber is equal to (larger than) the jet scale poleward (equatorward) of the supercriticality latitude.

2014 ◽  
Vol 71 (6) ◽  
pp. 2057-2077 ◽  
Author(s):  
Konstantinos Menelaou ◽  
M. K. Yau

Abstract The role of asymmetric convection to the intensity change of a weak vortex is investigated with the aid of a “dry” thermally forced model. Numerical experiments are conducted, starting with a weak vortex forced by a localized thermal anomaly. The concept of wave activity, the Eliassen–Palm flux, and eddy kinetic energy are then applied to identify the nature of the dominant generated waves and to diagnose their kinematics, structure, and impact on the primary vortex. The physical reasons for which disagreements with previous studies exist are also investigated utilizing the governing equation for potential vorticity (PV) perturbations and a number of sensitivity experiments. From the control experiment, it is found that the response of the vortex is dominated by the radiation of a damped sheared vortex Rossby wave (VRW) that acts to accelerate the symmetric flow through the transport of angular momentum. An increase of the kinetic energy of the symmetric flow by the VRW is shown also from the eddy kinetic energy budget. Additional tests performed on the structure and the magnitude of the initial thermal forcing confirm the robustness of the results and emphasize the significance of the wave–mean flow interaction to the intensification process. From the sensitivity experiments, it is found that for a localized thermal anomaly, regardless of the baroclinicity of the vortex and the radial and vertical gradients of the thermal forcing, the resultant PV perturbation follows a damping behavior, thus suggesting that deceleration of the vortex should not be expected.


2008 ◽  
Vol 21 (22) ◽  
pp. 5797-5806 ◽  
Author(s):  
Paul A. O’Gorman ◽  
Tapio Schneider

Abstract As the climate changes, changes in static stability, meridional temperature gradients, and availability of moisture for latent heat release may exert competing effects on the energy of midlatitude transient eddies. This paper examines how the eddy kinetic energy in midlatitude baroclinic zones responds to changes in radiative forcing in simulations with an idealized moist general circulation model. In a series of simulations in which the optical thickness of the longwave absorber is varied over a wide range, the eddy kinetic energy has a maximum for a climate with mean temperature similar to that of present-day earth, with significantly smaller values both for warmer and for colder climates. In a series of simulations in which the meridional insolation gradient is varied, the eddy kinetic energy increases monotonically with insolation gradient. In both series of simulations, the eddy kinetic energy scales approximately linearly with the dry mean available potential energy averaged over the baroclinic zones. Changes in eddy kinetic energy can therefore be related to the changes in the atmospheric thermal structure that affect the mean available potential energy.


2012 ◽  
Vol 42 (6) ◽  
pp. 956-972 ◽  
Author(s):  
Andrew F. Thompson ◽  
Jean-Baptiste Sallée

Abstract The Southern Ocean’s Antarctic Circumpolar Current (ACC) naturally lends itself to interpretations using a zonally averaged framework. Yet, navigation around steep and complicated bathymetric obstacles suggests that local dynamics may be far removed from those described by zonally symmetric models. In this study, both observational and numerical results indicate that zonal asymmetries, in the form of topography, impact global flow structure and transport properties. The conclusions are based on a suite of more than 1.5 million virtual drifter trajectories advected using a satellite altimetry–derived surface velocity field spanning 17 years. The focus is on sites of “cross front” transport as defined by movement across selected sea surface height contours that correspond to jets along most of the ACC. Cross-front exchange is localized in the lee of bathymetric features with more than 75% of crossing events occurring in regions corresponding to only 20% of the ACC’s zonal extent. These observations motivate a series of numerical experiments using a two-layer quasigeostrophic model with simple, zonally asymmetric topography, which often produces transitions in the front structure along the channel. Significantly, regimes occur where the equilibrated number of coherent jets is a function of longitude and transport barriers are not periodic. Jet reorganization is carried out by eddy flux divergences acting to both accelerate and decelerate the mean flow of the jets. Eddy kinetic energy is amplified downstream of topography due to increased baroclinicity related to topographic steering. The combination of high eddy kinetic energy and recirculation features enhances particle exchange. These results stress the complications in developing consistent circumpolar definitions of the ACC fronts.


2007 ◽  
Vol 37 (6) ◽  
pp. 1470-1487 ◽  
Author(s):  
Brian K. Arbic ◽  
Glenn R. Flierl ◽  
Robert B. Scott

Abstract Analysis of spectral kinetic energy fluxes in satellite altimetry data has demonstrated that an inverse cascade of kinetic energy is ubiquitous in the ocean. In geostrophic turbulence models, a fully developed inverse cascade results in barotropic eddies with large horizontal scales. However, midocean eddies contain substantial energy in the baroclinic mode and in compact horizontal scales (scales comparable to the deformation radius Ld). This paper examines the possibility that relatively strong bottom friction prevents the oceanic cascade from becoming fully developed. The importance of the vertical structure of friction is demonstrated by contrasting numerical simulations of two-layer quasigeostrophic turbulence forced by a baroclinically unstable mean flow and damped by bottom Ekman friction with turbulence damped by vertically symmetric Ekman friction (equal decay rates in the two layers). “Cascade inequalities” derived from the energy and enstrophy equations are used to interpret the numerical results. In the symmetric system, the inequality formally requires a cascade to large-scale barotropic flow, independent of the stratification. The inequality is less strict when friction is in the bottom layer only, especially when stratification is surface intensified. Accordingly, model runs with surface-intensified stratification and relatively strong bottom friction retain substantial small-scale baroclinic energy. Altimetric data show that the symmetric inequality is violated in the low- and midlatitude ocean, again suggesting the potential impact of the “bottomness” of friction on eddies. Inequalities developed for multilayer turbulence suggest that high baroclinic modes in the mean shear also enhance small-scale baroclinic eddy energy. The inequalities motivate a new interpretation of barotropization in weakly damped turbulence. In that limit the barotropic mode dominates the spatial average of kinetic energy density because large values of barotropic density are found throughout the model domain, consistent with the barotropic cascade to large horizontal scales, while baroclinic density is spatially localized.


2008 ◽  
Vol 65 (9) ◽  
pp. 2994-3001 ◽  
Author(s):  
Kyle Swanson

Abstract An intriguing manifestation of the underlying nonlinear fluid dynamic character of the atmosphere is found in an idealized quasigeostrophic model of the troposphere. For identical forcing and dissipation, the model’s climate is found to depend sensitively upon the choice of initial conditions, tending either toward a state resembling the current Northern Hemisphere wintertime circulation, characterized by significant mobile synoptic-scale transient disturbance activity, or a circulation still possessing vigorous synoptic transient behavior but more characterized by lower-frequency transient activity. Both of these dynamical states are strongly turbulent, with well-developed inertial ranges in their energy cascades, and transient kinetic energy on the same order as the kinetic energy of the time mean flow. This suggests the existence of multiple underlying turbulent strange attractors for the system. The climates of these states differ substantially, with the turbulent attractor with reduced synoptic transients having a zonal mean meridional temperature gradient substantially larger than the other climate attractor. This result suggests that turbulent behavior is not equivalent to uniqueness in atmospheric-like dynamical systems.


2021 ◽  
Vol 62 (10) ◽  
Author(s):  
Francesca De Serio ◽  
Roni H. Goldshmid ◽  
Dan Liberzon ◽  
Michele Mossa ◽  
M. Eletta Negretti ◽  
...  

AbstractThe present study has the main purpose to experimentally investigate a turbulent momentum jet issued in a basin affected by rotation and in presence of porous obstructions. The experiments were carried out at the Coriolis Platform at LEGI Grenoble (FR). A large and unique set of velocity data was obtained by means of a Particle Image Velocimetry measurement technique while varying the rotation rate of the tank and the density of the canopy. The main differences in jet behavior in various flow configurations were assessed in terms of mean flow, turbulent kinetic energy and jet spreading. The jet trajectory was also detected. The results prove that obstructions with increasing density and increased rotation rates induce a more rapid abatement of both jet velocity and turbulent kinetic energy. The jet trajectories can be scaled by a characteristic length, which is found to be a function of the jet initial momentum, the rotation rate, and the drag exerted by the obstacles. An empirical expression for the latter is also proposed and validated. Graphic abstract


2007 ◽  
Vol 37 (3) ◽  
pp. 673-688 ◽  
Author(s):  
Robert B. Scott ◽  
Brian K. Arbic

Abstract The energy pathways in geostrophic turbulence are explored using a two-layer, flat-bottom, f-plane, quasigeostrophic model forced by an imposed, horizontally homogenous, baroclinically unstable mean flow and damped by bottom Ekman friction. A systematic presentation of the spectral energy fluxes, the mean flow forcing, and dissipation terms allows for a comprehensive understanding of the sources and sinks for baroclinic and barotropic energy as a function of length scale. The key new result is a robust inverse cascade of kinetic energy for both the baroclinic mode and the upper layer. This is consistent with recent observations of satellite altimeter data over the South Pacific Ocean. The well-known forward cascade of baroclinic potential and total energy was found to be very robust. Decomposing the spectral fluxes into contributions from different terms provided further insight. The inverse baroclinic kinetic energy cascade is driven mostly by an efficient interaction between the baroclinic velocity and the barotropic vorticity, the latter playing a crucial catalytic role. This cascade can be further enhanced by the baroclinic mode self-interaction, which is only present with nonuniform stratification (unequal layer depths). When model parameters are set such that modeled eddies compare favorably with observations, the inverse baroclinic kinetic energy cascade is actually much stronger than the well-known inverse cascade in the barotropic mode. The upper-layer kinetic energy cascade was found to dominate the lower-layer cascade over a wide range of parameters, suggesting that the surface cascade and time mean density stratification may be sufficient for estimating the depth-integrated cascade from ocean observations. This may find useful application in inferring the kinetic to gravitational potential energy conversion rate from satellite measurements.


Author(s):  
J. Michael Battalio

AbstractThe ability of Martian reanalysis datasets to represent the growth and decay of short-period (1.5 < P < 8 sol) transient eddies is compared across the Mars Analysis Correction Data Assimilation (MACDA), Open access to Mars Assimilated Remote Soundings (OpenMARS), and Ensemble Mars Reanalysis System (EMARS). Short-period eddies are predominantly surface-based, have the largest amplitudes in the northern hemisphere, and are found, in order of decreasing eddy kinetic energy amplitude, in Utopia, Acidalia, and Arcadia Planitae in the northern hemisphere, and south of the Tharsis Plateau and between Argyre and Hellas Basins in the southern hemisphere. Short-period eddies grow on the upstream (western) sides of basins via baroclinic energy conversion and by extracting energy from the mean flow and long-period (P > 8 sol) eddies when interacting with high relief. Overall, the combined impact of barotropic energy conversion is a net loss of eddy kinetic energy, which rectifies previous conflicting results. When Thermal Emission Spectrometer observations are assimilated (Mars years 24–27), all three reanalyses agree on eddy amplitude and timing, but during the Mars Climate Sounder (MCS) observational era (Mars years 28–33), eddies are less constrained. The EMARS ensemble member has considerably higher eddy generation than the ensemble mean, and bulk eddy amplitudes in the deterministic OpenMARS reanalysis agree with the EMARS ensemble rather than the EMARS member. Thus, analysis of individual eddies during the MCS era should only be performed when eddy amplitudes are large and when there is agreement across reanalyses.


2005 ◽  
Vol 32 (14) ◽  
pp. n/a-n/a ◽  
Author(s):  
Øyvind Knutsen ◽  
Harald Svendsen ◽  
Svein Østerhus ◽  
Tom Rossby ◽  
Bogi Hansen

2018 ◽  
Vol 48 (6) ◽  
pp. 1385-1408 ◽  
Author(s):  
Guillaume Sérazin ◽  
Thierry Penduff ◽  
Bernard Barnier ◽  
Jean-Marc Molines ◽  
Brian K. Arbic ◽  
...  

AbstractA seasonally forced 1/12° global ocean/sea ice simulation is used to characterize the spatiotemporal inverse cascade of kinetic energy (KE). Nonlinear scale interactions associated with relative vorticity advection are evaluated using cross-spectral analysis in the frequency–wavenumber domain from sea level anomaly (SLA) time series. This analysis is applied within four eddy-active midlatitude regions having large intrinsic variability spread over a wide range of scales. Over these four regions, mesoscale surface KE is shown to spontaneously cascade toward larger spatial scales—between the deformation scale and the Rhines scale—and longer time scales (possibly exceeding 10 years). Other nonlinear processes might have to be invoked to explain the longer time scales of intrinsic variability, which have a substantial surface imprint at midlatitudes. The analysis of a fully forced 1/12° hindcast shows that low-frequency and synoptic atmospheric forcing barely affects this inverse KE cascade. The inverse cascade is also at work in a 1/4° simulation, albeit with a weaker intensity, consistent with the weaker intrinsic variability found at this coarser resolution. In the midlatitude North Pacific, the spatiotemporal cascade transfers KE from high-frequency frontal Rossby waves (FRWs), probably generated by baroclinic instability, toward the lower-frequency, westward-propagating mesoscale eddy (WME) field. The WMEs provide local gradients of potential vorticity that support these short Doppler-shifted FRWs. FRWs have periods shorter than 2 months and might be subsampled by altimetric observations, perhaps explaining why the temporal inverse cascade deduced from high-resolution models and mapped altimeter products can be quite different. The nature of the nonlinear interactions between FRWs and WMEs remains unclear but might involve wave turbulence processes.


Sign in / Sign up

Export Citation Format

Share Document