scholarly journals Baroclinic Adjustment and Dissipative Control of Storm Tracks

2018 ◽  
Vol 75 (9) ◽  
pp. 2955-2970 ◽  
Author(s):  
Lenka Novak ◽  
Maarten H. P. Ambaum ◽  
Ben J. Harvey

Abstract The steady-state response of a midlatitude storm track to large-scale extratropical thermal forcing and eddy friction is investigated in a dry general circulation model with a zonally symmetric forcing. A two-way equilibration is found between the relative responses of the mean baroclinicity and baroclinic eddy intensity, whereby mean baroclinicity responds more strongly to eddy friction whereas eddy intensity responds more strongly to the thermal forcing of baroclinicity. These seemingly counterintuitive responses are reconciled using the steady state of a predator–prey relationship between baroclinicity and eddy intensity. This relationship provides additional support for the well-studied mechanism of baroclinic adjustment in Earth’s atmosphere, as well as providing a new mechanism whereby eddy dissipation controls the large-scale thermal structure of a baroclinically unstable atmosphere. It is argued that these two mechanisms of baroclinic adjustment and dissipative control should be used in tandem when considering storm-track equilibration.

2010 ◽  
Vol 23 (13) ◽  
pp. 3474-3496 ◽  
Author(s):  
Amy H. Butler ◽  
David W. J. Thompson ◽  
Ross Heikes

Abstract The steady-state extratropical atmospheric response to thermal forcing is investigated in a simple atmospheric general circulation model. The thermal forcings qualitatively mimic three key aspects of anthropogenic climate change: warming in the tropical troposphere, cooling in the polar stratosphere, and warming at the polar surface. The principal novel findings are the following: 1) Warming in the tropical troposphere drives two robust responses in the model extratropical circulation: poleward shifts in the extratropical tropospheric storm tracks and a weakened stratospheric Brewer–Dobson circulation. The former result suggests heating in the tropical troposphere plays a fundamental role in the poleward contraction of the storm tracks found in Intergovernmental Panel on Climate Change (IPCC)-class climate change simulations; the latter result is in the opposite sense of the trends in the Brewer–Dobson circulation found in most previous climate change experiments. 2) Cooling in the polar stratosphere also drives a poleward shift in the extratropical storm tracks. The tropospheric response is largely consistent with that found in previous studies, but it is shown to be very sensitive to the level and depth of the forcing. In the stratosphere, the Brewer–Dobson circulation weakens at midlatitudes, but it strengthens at high latitudes because of anomalously poleward heat fluxes on the flank of the polar vortex. 3) Warming at the polar surface drives an equatorward shift of the storm tracks. The storm-track response to polar warming is in the opposite sense of the response to tropical tropospheric heating; hence large warming over the Arctic may act to attenuate the response of the Northern Hemisphere storm track to tropical heating. 4) The signs of the tropospheric and stratospheric responses to all thermal forcings considered here are robust to seasonal changes in the basic state, but the amplitude and details of the responses exhibit noticeable differences between equinoctial and wintertime conditions. Additionally, the responses exhibit marked nonlinearity in the sense that the response to multiple thermal forcings applied simultaneously is quantitatively different from the sum of the responses to the same forcings applied independently. Thus the response of the model to a given thermal forcing is demonstrably dependent on the other thermal forcings applied to the model.


2013 ◽  
Vol 26 (24) ◽  
pp. 9923-9930 ◽  
Author(s):  
Cheikh Mbengue ◽  
Tapio Schneider

Abstract Earth’s storm tracks are instrumental for transporting heat, momentum, and moisture and thus strongly influence the surface climate. Climate models, supported by a growing body of observational data, have demonstrated that storm tracks shift poleward as the climate warms. But the dynamical mechanisms responsible for this shift remain unclear. To isolate what portion of the storm track shift may be accounted for by large-scale dry dynamics alone, disregarding the latent heat released in phase changes of water, this study investigates the storm track shift under various kinds of climate change in an idealized dry general circulation model (GCM) with an adjustable but constant convective stability. It is found that increasing the mean surface temperature or the convective stability leads to poleward shifts of storm tracks, even if the convective stability is increased only in a narrow band around the equator. Under warming and convective stability changes roughly corresponding to a doubling of CO2 concentrations from a present-day Earthlike climate, storm tracks shift about 0.8° poleward, somewhat less than but in qualitative agreement with studies using moist GCMs. About 63% (0.5°) of the poleward shift is shown to be caused by tropical convective stability variations. This demonstrates that tropical processes alone (the increased dry static stability of a warmer moist adiabat) can account for part of the poleward shift of storm tracks under global warming. This poleward shift generally occurs in tandem with a poleward expansion of the Hadley circulation; however, the Hadley circulation expansion does not always parallel the storm track shift.


2009 ◽  
Vol 66 (3) ◽  
pp. 579-601 ◽  
Author(s):  
Tapio Schneider ◽  
Junjun Liu

Abstract The zonal flow in Jupiter’s upper troposphere is organized into alternating retrograde and prograde jets, with a prograde (superrotating) jet at the equator. Existing models posit as the driver of the flow either differential radiative heating of the atmosphere or intrinsic heat fluxes emanating from the deep interior; however, they do not reproduce all large-scale features of Jupiter’s jets and thermal structure. Here it is shown that the difficulties in accounting for Jupiter’s jets and thermal structure resolve if the effects of differential radiative heating and intrinsic heat fluxes are considered together, and if upper-tropospheric dynamics are linked to a magnetohydrodynamic (MHD) drag that acts deep in the atmosphere and affects the zonal flow away from but not near the equator. Baroclinic eddies generated by differential radiative heating can account for the off-equatorial jets; meridionally propagating equatorial Rossby waves generated by intrinsic convective heat fluxes can account for the equatorial superrotation. The zonal flow extends deeply into the atmosphere, with its speed changing with depth, away from the equator up to depths at which the MHD drag acts. The theory is supported by simulations with an energetically consistent general circulation model of Jupiter’s outer atmosphere. A simulation that incorporates differential radiative heating and intrinsic heat fluxes reproduces Jupiter’s observed jets and thermal structure and makes testable predictions about as yet unobserved aspects thereof. A control simulation that incorporates only differential radiative heating but not intrinsic heat fluxes produces off-equatorial jets but no equatorial superrotation; another control simulation that incorporates only intrinsic heat fluxes but not differential radiative heating produces equatorial superrotation but no off-equatorial jets. The proposed mechanisms for the formation of jets and equatorial superrotation likely act in the atmospheres of all giant planets.


2008 ◽  
Vol 38 (12) ◽  
pp. 2597-2618 ◽  
Author(s):  
Yann Friocourt ◽  
Sybren Drijfhout ◽  
Bruno Blanke

Abstract The dynamics of the baroclinic slope current system along the western European margin in the Bay of Biscay and along the northern Iberian Peninsula are investigated in two different models, one analytical and one numerical. Investigated here is the hypothesis that the steady-state slope current system is driven by the large-scale meridional density gradients. An analysis of the observed density fields evidences a four-layer structure with meridional gradients of alternate signs, which is also found in the numerical model. The linear analytical model of the continental margin shows that such a density structure is enough to obtain a steady-state four-layer slope current system comparable to the observed annual mean circulation. The slope currents result from a balance between bottom friction and meridional density gradients. The numerical simulation with an ocean general circulation model forced only by the large-scale density gradients at the lateral boundaries presents a four-layer slope current system similar to the circulation obtained in the analytical model. The study confirms that the large-scale meridional density gradients are the main driving mechanism for the steady-state slope current system; the large seasonality of these currents, however, requires a more extended model, which is discussed in a companion paper (Part II).


2016 ◽  
Vol 29 (6) ◽  
pp. 2123-2144 ◽  
Author(s):  
Adèle Révelard ◽  
Claude Frankignoul ◽  
Nathalie Sennéchael ◽  
Young-Oh Kwon ◽  
Bo Qiu

Abstract The atmospheric response to the Kuroshio Extension (KE) variability during 1979–2012 is investigated using a KE index derived from sea surface height measurements and an eddy-resolving ocean general circulation model hindcast. When the index is positive, the KE is in the stable state, strengthened and shifted northward, with lower eddy kinetic energy, and the Kuroshio–Oyashio Extension (KOE) region is anomalously warm. The reverse holds when the index is negative. Regression analysis shows that there is a coherent atmospheric response to the decadal KE fluctuations between October and January. The KOE warming generates an upward surface heat flux that leads to local ascending motions and a northeastward shift of the zones of maximum baroclinicity, eddy heat and moisture fluxes, and the storm track. The atmospheric response consists of an equivalent barotropic large-scale signal, with a downstream high and a low over the Arctic. The heating and transient eddy anomalies excite stationary Rossby waves that propagate the signal poleward and eastward. There is a warming typically exceeding 0.6 K at 900 hPa over eastern Asia and western United States, which reduces the snow cover by 4%–6%. One month later, in November–February, a high appears over northwestern Europe, and the hemispheric teleconnection bears some similarity with the Arctic Oscillation. Composite analysis shows that the atmospheric response primarily occurs during the stable state of the KE, while no evidence of a significant large-scale atmospheric response is found in the unstable state. Arguments are given to explain this strong asymmetry.


2006 ◽  
Vol 19 (9) ◽  
pp. 1802-1819 ◽  
Author(s):  
Shuanglin Li ◽  
Martin P. Hoerling ◽  
Shiling Peng ◽  
Klaus M. Weickmann

Abstract The leading pattern of Northern Hemisphere winter height variability exhibits an annular structure, one related to tropical west Pacific heating. To explore whether this pattern can be excited by tropical Pacific SST variations, an atmospheric general circulation model coupled to a slab mixed layer ocean is employed. Ensemble experiments with an idealized SST anomaly centered at different longitudes on the equator are conducted. The results reveal two different response patterns—a hemispheric pattern projecting on the annular mode and a meridionally arched pattern confined to the Pacific–North American sector, induced by the SST anomaly in the west and the east Pacific, respectively. Extratropical air–sea coupling enhances the annular component of response to the tropical west Pacific SST anomalies. A diagnosis based on linear dynamical models suggests that the two responses are primarily maintained by transient eddy forcing. In both cases, the model transient eddy forcing response has a maximum near the exit of the Pacific jet, but with a different meridional position relative to the upper-level jet. The emergence of an annular response is found to be very sensitive to whether transient eddy forcing anomalies occur within the axis of the jet core. For forcing within the jet core, energy propagates poleward and downstream, inducing an annular response. For forcing away from the jet core, energy propagates equatorward and downstream, inducing a trapped regional response. The selection of an annular versus a regionally confined tropospheric response is thus postulated to depend on how the storm tracks respond. Tropical west Pacific SST forcing is particularly effective in exciting the required storm-track response from which a hemisphere-wide teleconnection structure emerges.


2018 ◽  
Vol 9 (1) ◽  
pp. 285-297 ◽  
Author(s):  
Stefanie Talento ◽  
Marcelo Barreiro

Abstract. This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño–Southern Oscillation, weakening its amplitude and low-frequency behaviour.


Ocean Science ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 143-159 ◽  
Author(s):  
S. Cailleau ◽  
J. Chanut ◽  
J.-M. Lellouche ◽  
B. Levier ◽  
C. Maraldi ◽  
...  

Abstract. The regional ocean operational system remains a key element in downscaling from large scale (global or basin scale) systems to coastal ones. It enables the transition between systems in which the resolution and the resolved physics are quite different. Indeed, coastal applications need a system to predict local high frequency events (inferior to the day) such as storm surges, while deep sea applications need a system to predict large scale lower frequency ocean features. In the framework of the ECOOP project, a regional system for the Iberia-Biscay-Ireland area has been upgraded from an existing V0 version to a V2. This paper focuses on the improvements from the V1 system, for which the physics are close to a large scale basin system, to the V2 for which the physics are more adapted to shelf and coastal issues. Strong developments such as higher regional physics resolution in the NEMO Ocean General Circulation Model for tides, non linear free surface and adapted vertical mixing schemes among others have been implemented in the V2 version. Thus, regional thermal fronts due to tidal mixing now appear in the latest version solution and are quite well positioned. Moreover, simulation of the stratification in shelf areas is also improved in the V2.


2017 ◽  
Author(s):  
Stefanie Talento ◽  
Marcelo Barreiro

Abstract. This study aims to determine the role of the tropical ocean dynamics in the response of the climate to an extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a Reduced Gravity Ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of an extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics opposes the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates a strong warming in the centre-east of the basin from April to August balanced by a cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño Southern Oscillation, weakening its amplitude and low-frequency behaviour.


2007 ◽  
Vol 4 (5) ◽  
pp. 3413-3440 ◽  
Author(s):  
E. P. Maurer ◽  
H. G. Hidalgo

Abstract. Downscaling of climate model data is essential to most impact analysis. We compare two methods of statistical downscaling to produce continuous, gridded time series of precipitation and surface air temperature at a 1/8-degree (approximately 140 km² per grid cell) resolution over the western U.S. We use NCEP/NCAR Reanalysis data from 1950–1999 as a surrogate General Circulation Model (GCM). The two methods included are constructed analogues (CA) and a bias correction and spatial downscaling (BCSD), both of which have been shown to be skillful in different settings, and BCSD has been used extensively in hydrologic impact analysis. Both methods use the coarse scale Reanalysis fields of precipitation and temperature as predictors of the corresponding fine scale fields. CA downscales daily large-scale data directly and BCSD downscales monthly data, with a random resampling technique to generate daily values. The methods produce comparable skill in producing downscaled, gridded fields of precipitation and temperatures at a monthly and seasonal level. For daily precipitation, both methods exhibit some skill in reproducing both observed wet and dry extremes and the difference between the methods is not significant, reflecting the general low skill in daily precipitation variability in the reanalysis data. For low temperature extremes, the CA method produces greater downscaling skill than BCSD for fall and winter seasons. For high temperature extremes, CA demonstrates higher skill than BCSD in summer. We find that the choice of most appropriate downscaling technique depends on the variables, seasons, and regions of interest, on the availability of daily data, and whether the day to day correspondence of weather from the GCM needs to be reproduced for some applications. The ability to produce skillful downscaled daily data depends primarily on the ability of the climate model to show daily skill.


Sign in / Sign up

Export Citation Format

Share Document