scholarly journals Ensemble Sensitivity Analysis of Tropical Cyclone Intensification Rate during the Development Stage

2020 ◽  
Vol 77 (10) ◽  
pp. 3387-3405
Author(s):  
Chih-Chi Hu ◽  
Chun-Chieh Wu

AbstractEnsemble sensitivity analysis based on convective-permitting ensemble simulations is used to understand the processes associated with tropical cyclone (TC) intensification under idealized conditions. Partial correlations between different variables and the future TC intensification rate, with the effect of intensity removed, are used to identify the sensitive factors. It is found that the equivalent potential temperature (θe) in the region from the radius of maximum wind (RMW) to 3 times the RMW below 2 km (hereafter, the sensitive region) has the largest correlation (over 0.7) with 2.5-h intensity change. It is found that higher θe in the sensitive region is associated with not only a stronger updraft but also an inward shift of vertical motion in the mid- to upper eyewall. This suggests that higher θe just outside the RMW is favorable to TC intensification not only because of the larger amount of the heating, but also due to the heating location that is closer to the center. Trajectory analysis shows that the parcels in the sensitive region are mainly from the boundary layer inflow and the midlevel inflow. It is found that when the outer rainband is active, the midlevel inflow becomes stronger and is able to bring more low-θe air into the boundary layer, and the θe radially inward to the rainband decreases. Verification experiments justify that higher θe around the RMW to 3 times the RMW is favorable to TC intensification, while higher θe away from 5 times the RMW is shown to be unfavorable for TC intensification.

Author(s):  
Joshua B. Wadler ◽  
Joseph J. Cione ◽  
Jun A. Zhang ◽  
Evan A. Kalina ◽  
John Kaplan

AbstractThe relationship between deep-layer environmental wind shear direction and tropical cyclone (TC) boundary layer thermodynamic structures is explored in multiple independent databases. Analyses derived from the tropical cyclone buoy database (TCBD) show that when TCs experience northerly-component shear, the 10-m equivalent potential temperature (θe) tends to be more symmetric than when shear has a southerly component. The primary asymmetry in θe in TCs experiencing southerly-component shear is radially outwards from twice the radius of maximum wind speed, with the left-of-shear quadrants having lower θe by 4–6 K than the right-of-shear quadrants. As with the TCBD, an asymmetric (symmetric) distribution of 10-m θe for TCs experiencing southerly-component (northerly-component) shear was found using composite observations from dropsondes. These analyses show that differences in the degree of symmetry near the sea surface extend through the depth of the boundary layer. Additionally, mean dropsonde profiles illustrate that TCs experiencing northerly-component shear are more potentially unstable between 500 m and 1000 m altitude, signaling a more favorable environment for the development of surface-based convection in rainband regions.Analyses from the Statistical Hurricane Intensity Prediction Scheme (SHIPS) Database show that subsequent strengthening (weakening) for TCs in the Atlantic Basin preferentially occurs in northerly-component (southerly-component) deep-layer environmental wind shear environments which further illustrates that the asymmetric distribution of boundary layer thermodynamics is unfavorable for TC intensification. These differences emphasize the impact of deep-layer wind shear direction on TC intensity changes which likely result from the superposition of large-scale advection with the shear-relative asymmetries in TC structure.


2019 ◽  
Vol 76 (8) ◽  
pp. 2309-2334 ◽  
Author(s):  
Buo-Fu Chen ◽  
Christopher A. Davis ◽  
Ying-Hwa Kuo

Abstract Given comparable background vertical wind shear (VWS) magnitudes, the initially imposed shear-relative low-level mean flow (LMF) is hypothesized to modify the structure and convective features of a tropical cyclone (TC). This study uses idealized Weather Research and Forecasting Model simulations to examine TC structure and convection affected by various LMFs directed toward eight shear-relative orientations. The simulated TC affected by an initially imposed LMF directed toward downshear left yields an anomalously high intensification rate, while an upshear-right LMF yields a relatively high expansion rate. These two shear-relative LMF orientations affect the asymmetry of both surface fluxes and frictional inflow in the boundary layer and thus modify the TC convection. During the early development stage, the initially imposed downshear-left LMF promotes inner-core convection because of high boundary layer moisture fluxes into the inner core and is thus favorable for TC intensification because of large radial fluxes of azimuthal mean vorticity near the radius of maximum wind in the boundary layer. However, TCs affected by various LMFs may modify the near-TC VWS differently, making the intensity evolution afterward more complicated. The TC with a fast-established eyewall in response to the downshear-left LMF further reduces the near-TC VWS, maintaining a relatively high intensification rate. For the upshear-right LMF that leads to active and sustained rainbands in the downshear quadrants, TC size expansion is promoted by a positive radial flux of eddy vorticity near the radius of 34-kt wind (1 kt ≈ 0.51 m s−1) because the vorticity associated with the rainbands is in phase with the storm-motion-relative inflow.


2017 ◽  
Vol 74 (10) ◽  
pp. 3305-3323 ◽  
Author(s):  
Jeffrey D. Kepert

Abstract The transient response of the tropical cyclone boundary layer is studied using linearized and nonlinear models, with particular focus on the frictionally forced vertical motion. The impulsively started, linearized tropical cyclone boundary layer is shown to adjust to its equilibrium solution via a series of decaying oscillations with the inertial period . In the nonlinear case, the oscillation period is slightly lengthened by inward advection of the slower-evolving flow from larger radii, but the oscillations decay more quickly. In an idealized cyclone with small sinusoidal oscillations superimposed on the gradient wind, the equilibrium nonlinear boundary layer acts as a low-pass filter with pass length scaling as , where is the 10-m frictional inflow. This filter is absent from the linearized boundary layer. The eyewall frictional updraft is similarly displaced inward of the radius of maximum winds (RMW) by a distance that scales with , owing to nonlinear overshoot of the inflowing air as it crosses the relatively sharp increase in I near the eyewall. This displacement is smaller (other things being equal) when the RMW is small, and greater when it is large, including in secondary eyewalls. The dependence of this distance on may explain, at least partially, why observed RMW are seldom less than 20 km, why storms with relatively peaked radial profiles of wind speed can intensify more rapidly, and why some secondary eyewalls initially contract rapidly with little intensification, then contract more slowly while intensifying.


2016 ◽  
Vol 73 (3) ◽  
pp. 957-973 ◽  
Author(s):  
Jeffrey D. Kepert ◽  
Juliane Schwendike ◽  
Hamish Ramsay

Abstract Plausible diagnostics for the top of the tropical cyclone boundary layer include (i) the top of the layer of strong frictional inflow and (ii) the top of the “well mixed” layer, that is, the layer over which potential temperature θ is approximately constant. Observations show that these two candidate definitions give markedly different results in practice, with the inflow layer being roughly twice the depth of the layer of nearly constant θ. Here, the authors will present an analysis of the thermodynamics of the tropical cyclone boundary layer derived from an axisymmetric model. The authors show that the marked dry static stability in the upper part of the inflow layer is due largely to diabatic effects. The radial wind varies strongly with height and, therefore, so does radial advection of θ. This process also stabilizes the boundary layer but to a lesser degree than diabatic effects. The authors also show that this differential radial advection contributes to the observed superadiabatic layer adjacent to the ocean surface, where the vertical gradient of the radial wind is reversed, but that the main cause of this unstable layer is heating from turbulent dissipation. The top of the well-mixed layer is thus distinct from the top of the boundary layer in tropical cyclones. The top of the inflow layer is a better proxy for the top of the boundary layer but is not without limitations. These results may have implications for boundary layer parameterizations that diagnose the boundary layer depth from thermodynamic, or partly thermodynamic, criteria.


2017 ◽  
Vol 145 (3) ◽  
pp. 1003-1017 ◽  
Author(s):  
Udai Shimada ◽  
Kazumasa Aonashi ◽  
Yoshiaki Miyamoto

The relationship of tropical cyclone (TC) future intensity change to current intensity and current axisymmetricity deduced from hourly Global Satellite Mapping of Precipitation (GSMaP) data was investigated. Axisymmetricity is a metric that correlates positively with the magnitude of the axisymmetric component of the rainfall rate and negatively with the magnitude of the asymmetric component. The samples used were all of the TCs that existed in the western North Pacific basin during the years 2000–15. The results showed that, during the development stage, the intensification rate at the current time, and 6 and 12 h after the current time was strongly related to both the current intensity and axisymmetricity. On average, the higher the axisymmetricity, the larger the intensity change in the next 24 h for TCs with a current central pressure (maximum sustained wind) between 945 and 995 hPa (85 and 40 kt). The mean value of the axisymmetricity for TCs experiencing rapid intensification (RI) was much higher than that for non-RI TCs for current intensities of 960–990 hPa. The new observational evidence for the intensification process presented here is consistent with the findings of previous theoretical studies emphasizing the role of the axisymmetric component of diabatic heating.


2005 ◽  
Vol 62 (9) ◽  
pp. 3193-3212 ◽  
Author(s):  
Joey H. Y. Kwok ◽  
Johnny C. L. Chan

Abstract The influence of a uniform flow on the structural changes of a tropical cyclone (TC) is investigated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). Idealized experiments are performed on either an f plane or a β plane. A strong uniform flow on an f plane results in a weaker vortex due to the development of a vertical wind shear induced by the asymmetric vertical motion and a rotation of upper-level anticyclone. The asymmetric vertical motion also reduces the secondary circulation of the vortex. On a β plane with no flow, a broad anticyclonic flow is found to the southeast of the vortex, which expands with time. Similar to the f-plane case, asymmetric vertical motion and vertical wind shear are also found. This beta-induced shear weakens the no-flow case significantly relative to that on an f plane. When a uniform flow is imposed on a β plane, an easterly flow produces a stronger asymmetry whereas a westerly flow reduces it. In addition, an easterly uniform flow tends to strengthen the beta-induced shear whereas a westerly flow appears to reduce it by altering the magnitude and direction of the shear vector. As a result, a westerly flow enhances TC development while an easterly flow reduces it. The vortex tilt and midlevel warming found in this study agree with the previous investigations of vertical wind shear. A strong uniform flow with a constant f results in a tilted and deformed potential vorticity at the upper levels. For a variable f, such tilting is more pronounced for a vortex in an easterly flow, while a westerly flow reduces the tilt. In addition, the vortex tilt appears to be related to the midlevel warming such that the warm core in the lower troposphere cannot extent upward, which leads to the subsequent weakening of the TC.


2009 ◽  
Vol 137 (12) ◽  
pp. 4171-4187 ◽  
Author(s):  
Hamish A. Ramsay ◽  
Lance M. Leslie ◽  
Jeffrey D. Kepert

Abstract Advances in observations, theory, and modeling have revealed that inner-core asymmetries are a common feature of tropical cyclones (TCs). In this study, the inner-core asymmetries of a severe Southern Hemisphere tropical cyclone, TC Larry (2006), are investigated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and the Kepert–Wang boundary layer model. The MM5-simulated TC exhibited significant asymmetries in the inner-core region, including rainfall distribution, surface convergence, and low-level vertical motion. The near-core environment was characterized by very low environmental vertical shear and consequently the TC vortex had almost no vertical tilt. It was found that, prior to landfall, the rainfall asymmetry was very pronounced with precipitation maxima consistently to the right of the westward direction of motion. Persistent maxima in low-level convergence and vertical motion formed ahead of the translating TC, resulting in deep convection and associated hydrometeor maxima at about 500 hPa. The asymmetry in frictional convergence was mainly due to the storm motion at the eyewall, but was dominated by the proximity to land at larger radii. The displacement of about 30°–120° of azimuth between the surface and midlevel hydrometeor maxima is explained by the rapid cyclonic advection of hydrometeors by the tangential winds in the TC core. These results for TC Larry support earlier studies that show that frictional convergence in the boundary layer can play a significant role in determining the asymmetrical structures, particularly when the environmental vertical shear is weak or absent.


Author(s):  
Xiaomin Chen ◽  
George H. Bryan ◽  
Jun A. Zhang ◽  
Joseph J. Cione ◽  
Frank D. Marks

AbstractBoundary layer turbulent processes affect tropical cyclone (TC) structure and intensity change. However, uncertainties in the parameterization of the planetary boundary layer (PBL) under high-wind conditions remain challenging, mostly due to limited observations. This study presents and evaluates a framework of numerical simulation that can be used for a small-domain [O(5 km)] large-eddy simulation (LES) and single-column modeling (SCM) to study the TC boundary layer. The framework builds upon a previous study that uses a few input parameters to represent the TC vortex and adds a simple nudging term for temperature and moisture to account for the complex thermodynamic processes in TCs. The reference thermodynamic profiles at different wind speeds are retrieved from a composite analysis of dropsonde observations of mature hurricanes. Results from LES show that most of the turbulence kinetic energy and vertical momentum flux is associated with resolved processes when horizontal grid spacing is O(10 m). Comparison to observations of turbulence variables such as momentum flux, effective eddy viscosity, and turbulence length scale show that LES produces reasonable results but highlight areas where further observations are necessary. LES results also demonstrate that compared to a classic Ekman-type boundary layer, the TC boundary layer is shallower, develops steady conditions much quicker, and exhibits stronger wind speed near the surface. The utility of this framework is further highlighted by evaluating a first-order PBL parameterization, suggesting that an asymptotic turbulence length scale of 40 m produces a good match to LES results.


Author(s):  
Kyle Ahern ◽  
Robert E. Hart ◽  
Mark A. Bourassa

AbstractIn this first part of a two-part study, the three-dimensional structure of the inner-core boundary layer (BL) is investigated in a full-physics simulation of Hurricane Irma (2017). BL structure is highlighted during periods of intensity change, with focus on features and mechanisms associated with storm decay. The azimuthal structure of the BL is shown to be linked to the vertical wind shear and storm motion. The BL inflow becomes more asymmetric under increased shear. As BL inflow asymmetry amplifies, asymmetries in the low-level primary circulation and thermodynamic structure develop. A mechanism is identified to explain the onset of pronounced structural asymmetries in coincidence with external forcing (e.g., through shear) that would amplify BL inflow along limited azimuth. The mechanism assumes enhanced advection of absolute angular momentum along the path of the amplified inflow (e.g., amplified downshear), which results in local spin-up of the vortex and development of strong supergradient flow downwind and along the BL top. The associated agradient force results in the outward acceleration of air immediately above the BL inflow, affecting fields including divergence, vertical motion, entropy advection, and inertial stability. In this simulation, descending inflow in coincidence with amplified shear is identified as the conduit through which low-entropy air enters the inner-core BL, thereby hampering convection downwind and resulting in storm decay.


2012 ◽  
Vol 12 (12) ◽  
pp. 5483-5507 ◽  
Author(s):  
B. Rutherford ◽  
G. Dangelmayr ◽  
M. T. Montgomery

Abstract. Recent work has suggested that tropical cyclones intensify via a pathway of rotating deep moist convection in the presence of enhanced fluxes of moisture from the ocean. The rotating deep convective structures possessing enhanced cyclonic vorticity within their cores have been dubbed Vortical Hot Towers (VHTs). In general, the interaction between VHTs and the system-scale vortex, as well as the corresponding evolution of equivalent potential temperature (θe) that modulates the VHT activity, is a complex problem in moist helical turbulence. To better understand the structural aspects of the three-dimensional intensification process, a Lagrangian perspective is explored that focuses on the coherent structures seen in the flow field associated with VHTs and their vortical remnants, as well as the evolution and localized stirring of θe. Recently developed finite-time Lagrangian methods are limited in the three-dimensional turbulence and shear associated with the VHTs. In this paper, new Lagrangian techniques developed for three-dimensional velocity fields are summarized and we apply these techniques to study VHT and θe phenomenology in a high-resolution numerical tropical cyclone simulation. The usefulness of these methods is demonstrated by an analysis of particle trajectories. We find that VHTs create a locally turbulent mixing environment. However, associated with the VHTs are hyperbolic structures that span between adjacent VHTs or adjacent vortical remnants and represent coherent finite-time transport barriers in the flow field. Although the azimuthally-averaged inflow is responsible for the inward advection of boundary layer θe, attracting Lagrangian coherent structures are coincident with pools of high boundary layer θe. Extensions of boundary layer coherent structures grow above the boundary layer during episodes of convection and remain with the convective vortices. These hyperbolic structures form initially as boundaries between VHTs. As vorticity aggregates into a ring-like eyewall feature, the Lagrangian boundaries merge into a ring outside of the region of maximal vorticity.


Sign in / Sign up

Export Citation Format

Share Document