scholarly journals A Hail Growth Trajectory Model for Exploring the Environmental Controls on Hail Size: Model Physics and Idealized Tests

2020 ◽  
Vol 77 (8) ◽  
pp. 2765-2791 ◽  
Author(s):  
Matthew R. Kumjian ◽  
Kelly Lombardo

Abstract A detailed microphysical model of hail growth is developed and applied to idealized numerical simulations of deep convective storms. Hailstone embryos of various sizes and densities may be initialized in and around the simulated convective storm updraft, and then are tracked as they are advected and grow through various microphysical processes. Application to an idealized squall line and supercell storm results in a plausibly realistic distribution of maximum hailstone sizes for each. Simulated hail growth trajectories through idealized supercell storms exhibit many consistencies with previous hail trajectory work that used observed storms. Systematic tests of uncertain model parameters and parameterizations are performed, with results highlighting the sensitivity of hail size distributions to these changes. A set of idealized simulations is performed for supercells in environments with varying vertical wind shear to extend and clarify our prior work. The trajectory calculations reveal that, with increased zonal deep-layer shear, broader updrafts lead to increased residence time and thus larger maximum hail sizes. For cases with increased meridional low-level shear, updraft width is also increased, but hailstone sizes are smaller. This is a result of decreased residence time in the updraft, owing to faster northward flow within the updraft that advects hailstones through the growth region more rapidly. The results suggest that environments leading to weakened horizontal flow within supercell updrafts may lead to larger maximum hailstone sizes.

2012 ◽  
Vol 140 (7) ◽  
pp. 2064-2079 ◽  
Author(s):  
Stephanie A. Weiss ◽  
Donald R. MacGorman ◽  
Kristin M. Calhoun

Abstract This study uses data from the Oklahoma Lightning Mapping Array (OK-LMA), the National Lightning Detection Network, and the Norman, Oklahoma (KOUN), prototype Weather Surveillance Radar-1988 Doppler (WSR-88D) radar to examine the evolution and structure of lightning in the anvils of supercell storms as they relate to storm dynamics and microphysics. Several supercell storms within the domain of the OK-LMA were examined to determine whether they had lightning in the anvil region, and if so, the time and location of the initiation of the anvil flashes were determined. Every warm-season supercell storm had some flashes that were initiated in or near the stronger reflectivities of the parent storm and propagated 40–70 km downstream to penetrate well into the anvil. Some supercell storms also had flashes that were initiated within the anvil itself, 40–100 km beyond the closest 30-dBZ contour of the storm. These flashes were typically initiated in one of three locations: 1) coincident with a local reflectivity maximum, 2) between the uppermost storm charge and a screening-layer charge of opposite polarity near the cloud boundary, or 3) in a region in which the anvils from two adjoining storms intersected. In some storms, anvil flashes struck ground beneath a reflectivity maximum in which reflectivity ≥20 dBZ had extended below the 0°C isotherm, possibly leading to the formation of embedded convection. This relationship may be useful for identifying regions in which there is a heightened risk for cloud-to-ground strikes beneath anvil clouds. In one storm, however, anvil lightning struck ground even though this reflectivity signature was absent.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 207 ◽  
Author(s):  
Jens Wesholowski ◽  
Andreas Berghaus ◽  
Markus Thommes

Over recent years Twin-Screw-Extrusion (TSE) has been established as a platform technology for pharmaceutical manufacturing. Compared to other continuous operation, one of the major benefits of this method is the combination of several unit operations within one apparatus. Several of these are linked to the Residence Time Distribution (RTD), which is typically expressed by the residence time density function. One relevant aspect for pharmaceutical processes is the mixing capacity, which is represented by the width of this distribution. In the frame of this study the influence of the mass flow, the temperature and the screw-barrel clearance were investigated for a constant barrel load (specific feed load, SFL). While the total mass flow as well as the external screw diameter affected the mixing performance, the barrel temperature had no influence for the investigated range. The determined results were additionally evaluated with respect to a fit to the Twin-Dispersion-Model (TDM). This model is based on the superimposition of two mixing functions. The correlations between varied process parameters and the obtained characteristic model parameters proved this general physical view on extrusion.


Author(s):  
Abdullah Ali ◽  
Riris Adrianto ◽  
Miming Saepudin

One of the weather phenomena that potentially cause extreme weather conditions is the linear-shaped mesoscale convective systems, including squall lines. The phenomenon that can be categorized as a squall line is a convective cloud pair with the linear pattern of more than 100 km length and 6 hours lifetime. The new theory explained that the cloud system with the same morphology as squall line without longevity threshold. Such a cloud system is so-called Quasi-Linear Convective System (QLCS), which strongly influenced by the ambient dynamic processes, include horizontal and vertical wind profiles. This research is intended as a preliminary study for horizontal and vertical wind profiles of QLCS developed over the Western Java region utilizing Doppler weather radar. The following parameters were analyzed in this research, include direction pattern and spatial-temporal significance of wind speed, divergence profile, vertical wind shear (VWS) direction, and intensity profiles, and vertical velocity profile. The subjective and objective analysis was applied to explain the characteristics and effects of those parameters to the orientation of propagation, relative direction, and speed of the cloud system’s movement, and the lifetime of the system. Analysis results showed that the movement of the system was affected by wind direction and velocity patterns. The divergence profile combined with the vertical velocity profile represents the inflow which can supply water vapor for QLCS convective cloud cluster. Vertical wind shear that effect QLCS system is only its direction relative to the QLCS propagation, while the intensity didn’t have a significant effect.


Author(s):  
Jake P. Mulholland ◽  
John M. Peters ◽  
Hugh Morrison

AbstractThe influence of vertical wind shear on updraft entrainment in squall lines is not well understood. To address this knowledge gap, a suite of high-resolution idealized numerical model simulations of squall lines were run in various vertical wind shear (hereafter “shear”) environments to study the effects of shear on entrainment in deep convective updrafts. Low-level horizontal mass flux into the leading edge of the cold pool was strongest in the simulations with the strongest low-level shear. These simulations consequently displayed wider updrafts, less entrainment-driven dilution, and larger buoyancy than the simulations with comparatively weak low-level shear. An analysis of vertical accelerations along trajectories that passed through updrafts showed larger net accelerations from buoyancy in the simulations with stronger low-level shear, which demonstrates how less entrainment-driven dilution equated to stronger updrafts. The effects of upper-level shear on entrainment and updraft vertical velocities were generally less pronounced than the effects of low-level shear. We argue that in addition to the outflow boundary-shear interactions and their effect on updraft tilt established by previous authors, decreased entrainment-driven dilution is yet another beneficial effect of strong low-level shear on squall line updraft intensity.


2009 ◽  
Vol 137 (1) ◽  
pp. 366-390 ◽  
Author(s):  
Chung-Chieh Wang ◽  
George Tai-Jen Chen ◽  
Shan-Chien Yang ◽  
Hung-Chi Chou

Abstract The present study documents the environment, initiation, and evolution of three isolated supercell storms on 19 December 2002, as the first case near Taiwan reported in the literature, mainly using radar data and manual and gridded analyses. In a subtropical environment, the supercells occurred behind a winter cold front that provided a large west-southwesterly vertical wind shear of 6.4 × 10−3 s−1 at 0–3 km. This combined with weak-to-moderate instability (CAPE = 887 J kg−1) above the shallow surface cold air to yield a favorable environment for supercells. An approaching upper-level jet (ULJ) at 200 hPa also provided strong shear through deep layers farther aloft. Prior to storm initiation, significant daytime solar heating occurred over the mountain slopes along the coast of southeastern China, leading to development of local circulation and onshore/upslope winds, resulting in convergence and uplifting. Three storms were initiated about 80 km inland around 1400 LST near the peaks of local terrain with a northeast–southwest alignment. After formation, the three storms evolved into isolated supercells and each experienced multiple splits. The right-moving storms were usually stronger than left-moving ones and traveled eastward rapidly at about 18 m s−1 across the Taiwan Strait. The storms reached their maximum strength over the strait where low-level shear intensified during the day due to cold air surge. The northern storm also registered a peak reflectivity of 72 dBZ, the strongest ever recorded by any radar in Taiwan. Eventually, the three supercell storms made landfall over Taiwan, producing swaths of rain, hail, and property damages. Before they diminished after midnight, each of the three storms had lasted for about 10 h and propagated for over 550 km.


2019 ◽  
Vol 147 (12) ◽  
pp. 4437-4460 ◽  
Author(s):  
Kevin G. Kacan ◽  
Zachary J. Lebo

Abstract The dynamics of convective systems are inherently linked to microphysical processes through phase changes that result in warming or cooling. This is especially true of near-surface cooling via evaporation and melting of falling hydrometeors. In most numerical simulations, the melting of frozen hydrometeors (e.g., hail, graupel, snow) is computed within parameterized bulk microphysics schemes, many of which lack the ability to accurately represent mixed-phase hydrometeors (i.e., partially melted ice), which can affect hydrometeor sedimentation, melting, and evaporation of shed drops. To better understand the microphysical and dynamical effects of melting in convective storms, a bin microphysics scheme was used in the Weather Research and Forecasting Model for two idealized cases: a supercell storm and a squall line. Physically based predicted liquid fraction, instantaneous melting, and instantaneous shedding schemes were used to examine the role and importance of melting hydrometeors for these two storm modes. The results suggest that the amount of precipitation is dependent on the representation of melting. Moreover, the dynamic and thermodynamic characteristics of the simulated storms are found to differ substantially between the melting scenarios, resulting in varied storm system evolution; these differences are found to be dependent on the ambient aerosol concentration, although the differences induced by changing the representation of melting generally outweigh those of changing the aerosol loading. The results highlight the large role of melting in convective storm characteristics and suggest that further model improvements are needed in the near future.


Author(s):  
Paul D. Arendt ◽  
Wei Chen ◽  
Daniel W. Apley

Model updating, which utilizes mathematical means to combine model simulations with physical observations for improving model predictions, has been viewed as an integral part of a model validation process. While calibration is often used to “tune” uncertain model parameters, bias-correction has been used to capture model inadequacy due to a lack of knowledge of the physics of a problem. While both sources of uncertainty co-exist, these two techniques are often implemented separately in model updating. This paper examines existing approaches to model updating and presents a modular Bayesian approach as a comprehensive framework that accounts for many sources of uncertainty in a typical model updating process and provides stochastic predictions for the purpose of design. In addition to the uncertainty in the computer model parameters and the computer model itself, this framework accounts for the experimental uncertainty and the uncertainty due to the lack of data in both computer simulations and physical experiments using the Gaussian process model. Several challenges are apparent in the implementation of the modular Bayesian approach. We argue that distinguishing between uncertain model parameters (calibration) and systematic inadequacies (bias correction) is often quite challenging due to an identifiability issue. We present several explanations and examples of this issue and bring up the needs of future research in distinguishing between the two sources of uncertainty.


2014 ◽  
Vol 701-702 ◽  
pp. 624-629
Author(s):  
Wen Qiang Liu ◽  
Xue Mei Wang ◽  
Zi Li Deng

For the linear discrete-time multisensor time-invariant system with uncertain model parameters and measurement noise variances, by introducing fictitious noise to compensate the parameter uncertainties, using the minimax robust estimation principle, based on the worst-case conservative multisensor system with conservative upper bounds of measurement and fictitious noises variances, a robust weighted measurement fusion steady-state Kalman filter is presented. By the Lyapunov equation approach, it is proved that when the region of the parameter uncertainties is sufficient small, the corresponding actual fused filtering error variances are guaranteed to have a less-conservative upper bound. Simulation results show the effectiveness and correctness of the proposed results.


Sign in / Sign up

Export Citation Format

Share Document