The Tropical Cyclone as a Divergent Source in a Background Flow

2020 ◽  
Vol 77 (12) ◽  
pp. 4189-4210
Author(s):  
David R. Ryglicki ◽  
Daniel Hodyss ◽  
Gregory Rainwater

AbstractThe interactions between the outflow of a tropical cyclone (TC) and its background flow are explored using a hierarchy of models of varying complexity. Previous studies have established that, for a select class of TCs that undergo rapid intensification in moderate values of vertical wind shear, the upper-level outflow of the TC can block and reroute the environmental winds, thus reducing the shear and permitting the TC to align and subsequently to intensify. We identify in satellite imagery and reanalysis datasets the presence of tilt nutations and evidence of upwind blocking by the divergent wind field, which are critical components of atypical rapid intensification. We then demonstrate how an analytical expression and a shallow water model can be used to explain some of the structure of upper-level outflow. The analytical expression shows that the dynamic high inside the outflow front is a superposition of two pressure anomalies caused by the outflow’s deceleration by the environment and by the environment’s deceleration by the outflow. The shallow water model illustrates that the blocking is almost entirely dependent upon the divergent component of the wind. Then, using a divergent kinetic energy budget analysis, we demonstrate that, in a full-physics TC, upper-level divergent flow generation occurs in two phases: pressure driven and then momentum driven. The change happens when the tilt precession reaches left of shear. When this change occurs, the outflow blocking extends upshear. We discuss these results with regard to prior severe weather studies.

2018 ◽  
Author(s):  
LMD

We show how the two-layer moist-convective rotating shallow water model (mcRSW), which proved to be a simple and robust tool for studying effects of moist convection on large-scale atmospheric motions, can be improved by including, in addition to the water vapour, precipitable water, and the effects of vaporisation, entrainment, and precipitation. Thus improved mcRSW becomes cloud-resolving. It is applied, as an illustration, to model the development of instabilities of tropical cyclone-like vortices.


2015 ◽  
Vol 72 (11) ◽  
pp. 4194-4217 ◽  
Author(s):  
Sachie Kanada ◽  
Akiyoshi Wada

Abstract Extremely rapid intensification (ERI) of Typhoon Ida (1958) was examined with a 2-km-mesh nonhydrostatic model initiated at three different times. Ida was an extremely intense tropical cyclone with a minimum central pressure of 877 hPa. The maximum central pressure drop in 24 h exceeded 90 hPa. ERI was successfully simulated in two of the three experiments. A factor crucial to simulating ERI was a combination of shallow-to-moderate convection and tall, upright convective bursts (CBs). Under a strong environmental vertical wind shear (>10 m s−1), shallow-to-moderate convection on the downshear side that occurred around the intense near-surface inflow moistened the inner-core area. Meanwhile, dry subsiding flows on the upshear side helped intensification of midlevel (8 km) inertial stability. First, a midlevel warm core appeared below 10 km in the shallow-to-moderate convection areas, being followed by the development of the upper-level warm core associated with tall convection. When tall, upright, rotating CBs formed from the leading edge of the intense near-surface inflow, ERI was triggered at the area in which the air became warm and humid. CBs penetrated into the upper troposphere, aligning the areas with high vertical vorticity at low to midlevels. The upper-level warm core developed rapidly in combination with the midlevel warm core. Under the preconditioned environment, the formation of the upright CBs inside the radius of maximum wind speeds led to an upright axis of the secondary circulation within high inertial stability, resulting in a very rapid central pressure deepening.


2016 ◽  
Vol 144 (10) ◽  
pp. 3697-3724 ◽  
Author(s):  
Eric A. Hendricks ◽  
Michal A. Kopera ◽  
Francis X. Giraldo ◽  
Melinda S. Peng ◽  
James D. Doyle ◽  
...  

The utility of static and adaptive mesh refinement (SMR and AMR, respectively) are examined for idealized tropical cyclone (TC) simulations in a two-dimensional spectral element f-plane shallow-water model. The SMR simulations have varying sizes of the statically refined meshes (geometry based) while the AMR simulations use a potential vorticity (PV) threshold to adaptively refine the mesh to the evolving TC. Numerical simulations are conducted for four cases: (i) TC-like vortex advecting in a uniform flow, (ii) binary vortex interaction, (iii) barotropic instability of a PV ring, and (iv) barotropic instability of a thin strip of PV. For each case, a uniform grid high-resolution “truth” simulation is compared to two different SMR simulations and three different AMR simulations for accuracy and efficiency. The multiple SMR and AMR simulations have variations in the number of fully refined elements in the vicinity of the TC. For these idealized cases, it is found that the SMR and AMR simulations are able to resolve the vortex dynamical processes (e.g., barotropic instability, Rossby wave breaking, and filamentation) as well as the truth simulations, with no significant loss in accuracy in the refined region in the vortex vicinity and with significant speedups (factors of 4–15, depending on the total number of refined elements). The overall accuracy is enhanced by a greater area of fully refined mesh in both the SMR and AMR simulations.


2018 ◽  
Vol 852 ◽  
pp. 199-225 ◽  
Author(s):  
Michael C. Haigh ◽  
Pavel S. Berloff

This study is motivated by the need to develop stochastic parameterisations for representing the effects of mesoscale oceanic eddies in non-eddy-resolving and eddy-permitting ocean circulation models. A necessary logical step on the way to such parameterisations is the understanding of flow responses to spatially stationary and localised, time-dependent ‘plunger’ forcings intended to represent transient eddy flux divergences. Specifically, this study develops an understanding of the plunger-induced convergence of potential vorticity (PV) fluxes using the linearised single-layer shallow-water model. Time-periodic solutions are obtained and the ‘footprint’, defined as the time-mean, quasi-linear PV flux convergence, quantifies the cumulative PV redistribution induced by the plunger. Using the footprint, the equivalent eddy flux (EEF) is defined such that it succinctly quantifies the extent of the PV redistribution, and its dependencies on the forcing latitude and the background flow are examined in detail. For a uniform background flow the EEF is positive for all forcing latitudes, corresponding to net-poleward PV flux convergence, as expected by current theory of $\unicode[STIX]{x1D6FD}$-plane Rossby waves. The EEF also has a robust dependence on the direction and magnitude of a uniform background flow, which is a useful quality for the EEF to provide a basis for a parameterisation of eddy PV fluxes. We also examine the PV redistribution due to forcing on top of a Gaussian jet background flow and find that forcing proximity to the jet core is the primary factor in determining whether the jet is sharpened or broadened.


2019 ◽  
Vol 147 (4) ◽  
pp. 1171-1191 ◽  
Author(s):  
Dandan Tao ◽  
Fuqing Zhang

Abstract This study explores the spatial and temporal changes in tropical cyclone (TC) thermodynamic and dynamic structures before, near, and during rapid intensification (RI) under different vertical wind shear conditions through four sets of convection-permitting ensemble simulations. A composite analysis of TC structural evolution is performed by matching the RI onset time of each member. Without background flow, the axisymmetric TC undergoes a gradual strengthening of the inner-core vorticity and warm core throughout the simulation. In the presence of moderate environmental shear (5–6 m s−1), both the location and magnitude of the asymmetries in boundary layer radial flow, relative humidity, and vertical motion evolve with the tilt vector throughout the simulation. A budget analysis indicates that tilting is crucial to maintaining the midlevel vortex while stretching and vertical advection are responsible for the upper-level vorticity generation before RI when strong asymmetries arise. Two warm anomalies are observed before the RI onset when the vortex column is tilted. When approaching the RI onset, these two warm anomalies gradually merge into one. Overall, the most symmetric vortex structure is found near the RI onset. Moderately sheared TCs experience an adjustment period from a highly asymmetric structure with updrafts concentrated at the down-tilt side before RI to a more axisymmetric structure during RI as the eyewall updrafts develop. This adjustment period near the RI onset, however, is found to be the least active period for deep convection. TC development under a smaller environmental shear (2.5 m s−1) condition displays an intermediate evolution between ensemble experiments with no background flow and with moderate shear (5–6 m s−1).


2020 ◽  
Vol 32 (12) ◽  
pp. 124117
Author(s):  
M. W. Harris ◽  
F. J. Poulin ◽  
K. G. Lamb

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2152
Author(s):  
Gonzalo García-Alén ◽  
Olalla García-Fonte ◽  
Luis Cea ◽  
Luís Pena ◽  
Jerónimo Puertas

2D models based on the shallow water equations are widely used in river hydraulics. However, these models can present deficiencies in those cases in which their intrinsic hypotheses are not fulfilled. One of these cases is in the presence of weirs. In this work we present an experimental dataset including 194 experiments in nine different weirs. The experimental data are compared to the numerical results obtained with a 2D shallow water model in order to quantify the discrepancies that exist due to the non-fulfillment of the hydrostatic pressure hypotheses. The experimental dataset presented can be used for the validation of other modelling approaches.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2054
Author(s):  
Naoki Kuroda ◽  
Katsuhide Yokoyama ◽  
Tadaharu Ishikawa

Our group has studied the spatiotemporal variation of soil and water salinity in an artificial salt marsh along the Arakawa River estuary and developed a practical model for predicting soil salinity. The salinity of the salt marsh and the water level of a nearby channel were measured once a month for 13 consecutive months. The vertical profile of the soil salinity in the salt marsh was measured once monthly over the same period. A numerical flow simulation adopting the shallow water model faithfully reproduced the salinity variation in the salt marsh. Further, we developed a soil salinity model to estimate the soil salinity in a salt marsh in Arakawa River. The vertical distribution of the soil salinity in the salt marsh was uniform and changed at almost the same time. The hydraulic conductivity of the soil, moreover, was high. The uniform distribution of salinity and high hydraulic conductivity could be explained by the vertical and horizontal transport of salinity through channels burrowed in the soil by organisms. By combining the shallow water model and the soil salinity model, the soil salinity of the salt marsh was well reproduced. The above results suggest that a stable brackish ecotone can be created in an artificial salt marsh using our numerical model as a design tool.


2009 ◽  
Vol 137 (10) ◽  
pp. 3339-3350 ◽  
Author(s):  
Ramachandran D. Nair

Abstract A second-order diffusion scheme is developed for the discontinuous Galerkin (DG) global shallow-water model. The shallow-water equations are discretized on the cubed sphere tiled with quadrilateral elements relying on a nonorthogonal curvilinear coordinate system. In the viscous shallow-water model the diffusion terms (viscous fluxes) are approximated with two different approaches: 1) the element-wise localized discretization without considering the interelement contributions and 2) the discretization based on the local discontinuous Galerkin (LDG) method. In the LDG formulation the advection–diffusion equation is solved as a first-order system. All of the curvature terms resulting from the cubed-sphere geometry are incorporated into the first-order system. The effectiveness of each diffusion scheme is studied using the standard shallow-water test cases. The approach of element-wise localized discretization of the diffusion term is easy to implement but found to be less effective, and with relatively high diffusion coefficients, it can adversely affect the solution. The shallow-water tests show that the LDG scheme converges monotonically and that the rate of convergence is dependent on the coefficient of diffusion. Also the LDG scheme successfully eliminates small-scale noise, and the simulated results are smooth and comparable to the reference solution.


Sign in / Sign up

Export Citation Format

Share Document