Moisture Variation with Cloud Effects during a BSISO over the Eastern Maritime Continent in a Cloud-Permitting-Scale Simulation

Author(s):  
Yuntao Wei ◽  
Zhaoxia Pu

AbstractDespite the great importance of interactions between moisture, clouds, radiation, and convection in the Madden-Julian Oscillation, their role in the boreal summer intraseasonal oscillation (BSISO) has not been well established. This study investigates the moisture variation of a BSISO during its rapid redevelopment over the eastern Maritime Continent through a cloud-permitting-scale numerical simulation. It is found that moisture variation depends closely on the evolution of clouds and precipitation. Total moisture budget analysis reveals that the deepening and strengthening (lessening) of humidity before (after) the BSISO deep convection are attributed largely to zonal advection. In addition, the column moistening/drying is mostly in phase with the humidity and is related to the maintenance of BSISO.An objective cloud-type classification method and a weak temperature gradient approximation are used to further understand the column moistening/drying. Results indicate that elevated stratiform clouds play a significant role in moistening the lower troposphere through cloud water evaporation. Decreases in deep convection condensation and re-evaporation of deep stratiform precipitation induce moistening during the development and after the decay of BSISO deep convection, respectively. Meanwhile, anomalous longwave radiative heating appears first in the lower troposphere during the developing stage of BSISO, further strengthens via the increase of deep stratiform clouds, and eventually deepens with elevated stratiform clouds. Accordingly, anomalous moistening largely in phase with the humidity of BSISO toward its suppressed stage is induced via compensated ascent. Owing to the anomalous decrease in the ratio of vertical moisture and potential temperature gradients, the cloud-radiation effect is further enhanced in the convective phase of BSISO.

2013 ◽  
Vol 26 (8) ◽  
pp. 2417-2431 ◽  
Author(s):  
Qiongqiong Cai ◽  
Guang J. Zhang ◽  
Tianjun Zhou

Abstract The role of shallow convection in Madden–Julian oscillation (MJO) simulation is examined in terms of the moist static energy (MSE) and moisture budgets. Two experiments are carried out using the NCAR Community Atmosphere Model, version 3.0 (CAM3.0): a “CTL” run and an “NSC” run that is the same as the CTL except with shallow convection disabled below 700 hPa between 20°S and 20°N. Although the major features in the mean state of outgoing longwave radiation, 850-hPa winds, and vertical structure of specific humidity are reasonably reproduced in both simulations, moisture and clouds are more confined to the planetary boundary layer in the NSC run. While the CTL run gives a better simulation of the MJO life cycle when compared with the reanalysis data, the NSC shows a substantially weaker MJO signal. Both the reanalysis data and simulations show a recharge–discharge mechanism in the MSE evolution that is dominated by the moisture anomalies. However, in the NSC the development of MSE and moisture anomalies is weaker and confined to a shallow layer at the developing phases, which may prevent further development of deep convection. By conducting the budget analysis on both the MSE and moisture, it is found that the major biases in the NSC run are largely attributed to the vertical and horizontal advection. Without shallow convection, the lack of gradual deepening of upward motion during the developing stage of MJO prevents the lower troposphere above the boundary layer from being preconditioned for deep convection.


2006 ◽  
Vol 134 (8) ◽  
pp. 2251-2265 ◽  
Author(s):  
Satoru Yokoi ◽  
Takehiko Satomura

Abstract Mechanisms of the northward movement of submonthly scale vortices over the Bay of Bengal during the boreal summer (May–September) are studied with the use of a vorticity budget analysis applied to the ECMWF 40-yr Re-Analysis (ERA-40) data. To quantitatively evaluate the contribution from each term that constitutes the vorticity anomaly equation to the movement of the vortices, a vector measure, termed the forcing vector (FV), is used in the present study. Because the axis of the submonthly scale relative vorticity anomaly does not tilt meridionally below the 200-hPa level, the mechanisms of the northward movement of a composite submonthly scale vortex integrated from the surface to the 100-hPa level [the barotropic component (BTC)] are studied. The barotropic vortex moves northwestward, with northward speeds of 0.9° day−1. The meridional component of the FV (MFV), which represents the contribution to the meridional component of the movement, reveals that the primary and secondary terms that contribute to the northward movement are the advection of the vortex by the environmental meridional wind, and the tilting effect of the environmental horizontal vorticity vector by the vertical pressure velocity anomaly associated with the vortex, respectively. The former term works mainly in the lower troposphere, while the latter operates in the middle and upper troposphere. The first baroclinic component (FBCC) of the vortex in the troposphere also moves northwestward with almost the same northward speed as the BTC. Mechanisms of the northward movement of the FBCC are also clarified in the present study through examination of the MFV. The primary contributing term is the same as that of the BTC, while the tilting term hinders the northward movement of the FBCC. For the FBCC, the secondary contributing term is the advection of the planetary vorticity by the meridional wind anomaly associated with the horizontal convergence and divergence anomalies in the lower and upper troposphere, respectively. The present study also discusses the phase relation between the BTC and the FBCC from the viewpoint of their northward movement in an environment of easterly vertical shear.


2021 ◽  
Author(s):  
Xiaoxuan Zhao ◽  
Buwen Dong ◽  
Riyu Lu

AbstractIn this study, the cross-equatorial flows (CEF) on both high and low level (HCEF/LCEF) troposphere over the Maritime Continent (MC) in boreal summer are found to have experienced an interdecadal weakening in the mid-1990s based on both JRA55 and NCEP reanalyses. The outputs of 8 coupled models in CMIP6 are used to investigate drivers and the corresponding mechanisms. Model results show that the role of external forcing is weak in the interdecadal weakening of CEF. By contrast, the observed interdecadal weakening of both HCEF and LCEF can be largely explained by internal variability associated with a negative phase of the interdecadal Pacific Oscillation (IPO). Associated with negative IPO are anomalous divergence (convergence), enhanced precipitation over MC and anomalous cyclonic (anticyclonic) circulations, reduced precipitation over western North Pacific (WNP) in the upper (lower) troposphere. Sensitivity experiments based on MetUM-GA6 further manifest that this IPO phase transition can lead to the interdecadal weakening of CEF, in which the central tropical Pacific (CTP) sea surface temperature (SST) anomalies play a dominant role. The cold SST anomalies in CTP lead to reduced local convection and trigger enhanced convection over MC through changes in the Walker circulation. The enhanced convection over MC leads to a change in local Hadley circulation over the western Pacific sector. This change is characterized by anomalous ascents over MC, southerlies in the upper troposphere, descents and reduced precipitation over WNP and northerlies in the lower troposphere, leading to the weakening of CEF. Meanwhile, positive SST anomalies over MC associated with negative IPO also make a contribution to the weakening of CEF by inducing a change in the Hadley circulation in the western Pacific sector through similar processes.


2015 ◽  
Vol 15 (4) ◽  
pp. 5423-5459 ◽  
Author(s):  
E. Johansson ◽  
A. Devasthale ◽  
T. L'Ecuyer ◽  
A. M. L. Ekman ◽  
M. Tjernström

Abstract. Every year the monsoonal circulation over the Indian subcontinent gives rise to a variety of cloud types that differ considerably in their ability to heat or cool the atmosphere. These clouds in turn affect monsoon dynamics via their radiative impacts, both at the surface and in the atmosphere. New generation of satellites carrying active radar and lidar sensors are allowing realistic quantification of cloud radiative heating (CRH) by resolving the vertical structure of the atmosphere in an unprecedented detail. Obtaining this information is a first step in closing the knowledge gap in our understanding of the role that different clouds play as regulators of the monsoon and vice versa. Here, we use collocated CloudSat-CALIPSO data sets to understand following aspects of cloud-radiation interactions associated with Indian monsoon circulation. (1) How does the vertical distribution of CRH evolve over the Indian continent throughout monsoon season? (2) What is the absolute contribution of different clouds types to the total CRH? (3) How do active and break periods of monsoon affect the distribution of CRH? And finally, (4) what are the net radiative effects of different cloud types on surface heating? In general, the vertical structure of CRH follows the northward migration and the retreat of monsoon from May to October. It is found that the alto- and nimbostratus clouds intensely warm the middle troposphere and equally strongly cool the upper troposphere. Their warming/cooling consistently exceeds ±0.2 K day−1 (after weighing by vertical cloud fraction) in monthly mean composites throughout the middle and upper troposphere respectively, with largest impact observed in June, July and August. Deep convective towers cause considerable warming in the middle and upper troposphere, but strongly cool the base and inside of the tropical tropopause layer (TTL). Such cooling is stronger during active (−1.23 K day−1) monsoon conditions compared to break periods (−0.36 K day−1). The contrasting warming effect of high clouds inside the TTL is found to be double in magnitude during active conditions compared to break periods. It is further shown that stratiform clouds (combining alto- and nimbostratus clouds) and deep convection significantly cool the surface with net radiative effect in the order of −100 and −400 W m−2, respectively, while warming the atmosphere in the order of 40 and 150 W m−2. While deep convection produces strong cooling at the surface during active periods of monsoon, the importance of stratiform clouds, on the other hand, increases during break periods. The contrasting CREs in the atmosphere and at surface, and during active and break conditions, have direct implications for monsoonal circulation.


2011 ◽  
Vol 24 (11) ◽  
pp. 2728-2736 ◽  
Author(s):  
Hui Su ◽  
Jonathan H. Jiang ◽  
Xiaohong Liu ◽  
Joyce E. Penner ◽  
William G. Read ◽  
...  

Abstract Satellite observations are analyzed to examine the correlations between aerosols and the tropical tropopause layer (TTL) temperature and water vapor. This study focuses on two regions, both of which are important pathways for the mass transport from the troposphere to the stratosphere and over which Asian pollution prevails: South and East Asia during boreal summer and the Maritime Continent during boreal winter. Using the upper-tropospheric carbon monoxide measurements from the Aura Microwave Limb Sounder as a proxy of aerosols to classify ice clouds as polluted or clean, the authors find that polluted clouds have a smaller ice effective radius and a higher temperature and specific humidity near the tropopause than clean clouds. The increase in water vapor appears to be related to the increase in temperature, as a result of increased aerosols. Meteorological differences between the clouds cannot explain the differences in temperature and water vapor for the polluted and clean clouds. The authors hypothesize that aerosol semidirect radiative heating and/or changes in cirrus radiative heating, resulting from aerosol microphysical effects on clouds, may contribute to the increased TTL temperature and thus increased water vapor in the polluted clouds.


2020 ◽  
pp. 1-49
Author(s):  
Jiahao Lu ◽  
Tim Li ◽  
Lu Wang

AbstractThe modulation of diurnal cycle (DC) of precipitation over the Maritime Continent (MC) by the background annual cycle mean state was studied for the period of 1998-2014 through observational analyses and high-resolution simulations using the Weather Research and Forecasting (WRF) model. The observational analyses reveal that there are statistically significant differences in the DC amplitude between boreal winter and summer. The amplitude of precipitation DC reduces by about 35% during boreal summer compared to boreal winter, especially over the MC major islands and adjacent oceans. A precipitation budget analysis indicates that the DC amplitude difference is primarily attributed to vertically integrated convergence of the mean moisture by diurnal winds. The relative roles of the background dynamic and thermodynamic states in causing the enhanced diurnal wind activity in boreal winter are further investigated through idealized WRF simulations. The results show that the seasonal mean background moisture condition is most critical in inducing the winter-summer difference of the precipitation DC over the MC, followed by atmospheric static stability (i.e., vertical temperature gradient) and circulation conditions.


2015 ◽  
Vol 15 (20) ◽  
pp. 11557-11570 ◽  
Author(s):  
E. Johansson ◽  
A. Devasthale ◽  
T. L'Ecuyer ◽  
A. M. L. Ekman ◽  
M. Tjernström

Abstract. Clouds forming during the summer monsoon over the Indian subcontinent affect its evolution through their radiative impact as well as the release of latent heat. While the latter is previously studied to some extent, comparatively little is known about the radiative impact of different cloud types and the vertical structure of their radiative heating/cooling effects. Therefore, the main aim of this study is to partly fill this knowledge gap by investigating and documenting the vertical distributions of the different cloud types associated with the Indian monsoon and their radiative heating/cooling using the active radar and lidar sensors onboard CloudSat and CALIPSO. The intraseasonal evolution of clouds from May to October is also investigated to understand pre-to-post monsoon transitioning of their radiative heating/cooling effects. The vertical structure of cloud radiative heating (CRH) follows the northward migration and retreat of the monsoon from May to October. Throughout this time period, stratiform clouds radiatively warm the middle troposphere and cool the upper troposphere by more than ±0.2 K day−1 (after weighing by cloud fraction), with the largest impacts observed in June, July and August. During these months, the fraction of high thin cloud remains high in the tropical tropopause layer (TTL). Deep convective towers cause considerable radiative warming in the middle and upper troposphere, but strongly cool the base and inside of the TTL. This cooling is stronger during active (−1.23 K day−1) monsoon periods compared to break periods (−0.36 K day−1). The contrasting radiative warming effect of high clouds in the TTL is twice as large during active periods than in break periods. These results highlight the increasing importance of CRH with altitude, especially in the TTL. Stratiform (made up of alto- and nimbostratus clouds) and deep convection clouds radiatively cool the surface by approximately −100 and −400 W m−2 respectively while warming the atmosphere radiatively by about 40 to 150 W m−2. While the cooling at the surface induced by deep convection and stratiform clouds is largest during active periods of monsoon, the importance of stratiform clouds further increases during break periods. The contrasting CREs (cloud radiative effects) in the atmosphere and at surface, and during active and break periods, should have direct implications for the monsoonal circulation.


2012 ◽  
Vol 140 (9) ◽  
pp. 2841-2859 ◽  
Author(s):  
Chie Yokoyama ◽  
Yukari N. Takayabu

Abstract Synoptic-scale westward-propagating disturbances over the eastern Pacific (EP) are analyzed in boreal autumn, utilizing spectral analysis, composite analysis, and energy budget analysis. The results are compared with those over the western Pacific (WP). Spectral peaks of total precipitable water (TPW) and vertical velocity at 850 hPa (ω850), and outgoing longwave radiation (OLR) are detected at periods of ~3–7 days over the EP. Meanwhile over the WP, a spectral peak of OLR is pronounced, but peaks of TPW and ω850 are not detected. Composite analysis reveals that disturbances that have a coupled structure, with a vortex at its center near ~9°N and a mixed Rossby–gravity (MRG) wave–type disturbance, frequently exist over the EP. At the same time, the disturbances have a double-deck structure associated with divergence both in the upper and in the middle to lower troposphere. These disturbances are associated with both deep convection and congestus, which generate kinetic energy of the disturbance in the upper and in the lower troposphere, respectively. Examining diabatic heating in relation to the coupled disturbances, deep heating with the peak at the height of ~7.5 km is greatest in the northeastern part of the vortex. The coupled MRG wave–type disturbance provides a relatively deep cross-equatorial southerly flow into the northeastern part of the vortex. It is suggested that deep rain is maintained with the existence of deep convergence produced by the coupled disturbances over the EP, where a very shallow convergence field exists on average.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 114
Author(s):  
Young-Min Yang ◽  
Taehyoun Shim ◽  
Ja-Yeon Moon ◽  
Ki-Young Kim ◽  
Yu-Kyung Hyun

A Madden–Jillian oscillation (MJO) and boreal summer intraseasonal oscillation (BSISO) are important climate variabilities, which affect a forecast of weather and climate. In this study, the MJO and the BSISO hindcasts from the Global Seasonal Forecast System, version 5 (GS5) were diagnosed using dynamic-oriented theories. We additionally analyzed the GS5 climatological run to identify whether the weakness of the GS5 hindcast results from the model physics or initialization processes. The GS5 hindcast captures three-dimensional dynamics and thermodynamics structure of MJO eastward propagation well in the Indian Ocean. The model produces the boundary layer (BL) moisture convergence anomalies to the east of the MJO deep precipitation with easterly anomalies associated with the Kelvin wave. The enhanced BL moisture convergence increases upward transport of moisture from the surface to the lower troposphere, inducing the moist lower troposphere and the positive convective instability by destabilization of the lower atmosphere and, thus, generating the next convection to the east of MJO deep convection and promoting MJO eastward propagation. However, the signal for eastward propagation is relatively weak in the Maritime Continent (MC) and the Western Pacific (WP). To improve the MJO eastward propagation in the MC and WP, improved heating induced by shallow (or congestus) clouds interacting with enhanced BL dynamics may be required. On the other hand, the GS5 hindcast reproduces the BSISO northward propagation reasonably well in the Indian Ocean, which is attributed to positive vorticity anomalies induced by strong vertical shear.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yahya Darmawan ◽  
Huang-Hsiung Hsu ◽  
Jia-Yuh Yu

This study aims to explore the contrasting characteristics of large-scale circulation that led to the precipitation anomalies over the northern parts of Sumatra Island. Further, the impact of varying the Asian–Australian Monsoon (AAM) was investigated for triggering the precipitation variability over the study area. The moisture budget analysis was applied to quantify the most dominant component that induces precipitation variability during the JJA (June, July, and August) period. Then, the composite analysis and statistical approach were applied to confirm the result of the moisture budget. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Anaysis Interim (ERA-Interim) from 1981 to 2016, we identified 9 (nine) dry and 6 (six) wet years based on precipitation anomalies, respectively. The dry years (wet years) anomalies over the study area were mostly supported by downward (upward) vertical velocity anomaly instead of other variables such as specific humidity, horizontal velocity, and evaporation. In the dry years (wet years), there is a strengthening (weakening) of the descent motion, which triggers a reduction (increase) of convection over the study area. The overall downward (upward) motion of westerly (easterly) winds appears to suppress (support) the convection and lead to negative (positive) precipitation anomaly in the whole region but with the largest anomaly over northern parts of Sumatra. The AAM variability proven has a significant role in the precipitation variability over the study area. A teleconnection between the AAM and other global circulations implies the precipitation variability over the northern part of Sumatra Island as a regional phenomenon. The large-scale tropical circulation is possibly related to the PWC modulation (Pacific Walker Circulation).


Sign in / Sign up

Export Citation Format

Share Document