Observed Increase of TTL Temperature and Water Vapor in Polluted Clouds over Asia

2011 ◽  
Vol 24 (11) ◽  
pp. 2728-2736 ◽  
Author(s):  
Hui Su ◽  
Jonathan H. Jiang ◽  
Xiaohong Liu ◽  
Joyce E. Penner ◽  
William G. Read ◽  
...  

Abstract Satellite observations are analyzed to examine the correlations between aerosols and the tropical tropopause layer (TTL) temperature and water vapor. This study focuses on two regions, both of which are important pathways for the mass transport from the troposphere to the stratosphere and over which Asian pollution prevails: South and East Asia during boreal summer and the Maritime Continent during boreal winter. Using the upper-tropospheric carbon monoxide measurements from the Aura Microwave Limb Sounder as a proxy of aerosols to classify ice clouds as polluted or clean, the authors find that polluted clouds have a smaller ice effective radius and a higher temperature and specific humidity near the tropopause than clean clouds. The increase in water vapor appears to be related to the increase in temperature, as a result of increased aerosols. Meteorological differences between the clouds cannot explain the differences in temperature and water vapor for the polluted and clean clouds. The authors hypothesize that aerosol semidirect radiative heating and/or changes in cirrus radiative heating, resulting from aerosol microphysical effects on clouds, may contribute to the increased TTL temperature and thus increased water vapor in the polluted clouds.

2019 ◽  
Vol 19 (23) ◽  
pp. 14621-14636 ◽  
Author(s):  
Xun Wang ◽  
Andrew E. Dessler ◽  
Mark R. Schoeberl ◽  
Wandi Yu ◽  
Tao Wang

Abstract. We use a forward Lagrangian trajectory model to diagnose mechanisms that produce the water vapor seasonal cycle observed by the Microwave Limb Sounder (MLS) and reproduced by the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) in the tropical tropopause layer (TTL). We confirm in both the MLS and GEOSCCM that the seasonal cycle of water vapor entering the stratosphere is primarily determined by the seasonal cycle of TTL temperatures. However, we find that the seasonal cycle of temperature predicts a smaller seasonal cycle of TTL water vapor between 10 and 40∘ N than observed by MLS or simulated by the GEOSCCM. Our analysis of the GEOSCCM shows that including evaporation of convective ice in the trajectory model increases both the simulated maximum value of the 100 hPa 10–40∘ N water vapor seasonal cycle and the seasonal-cycle amplitude. We conclude that the moistening effect from convective ice evaporation in the TTL plays a key role in regulating and maintaining the seasonal cycle of water vapor in the TTL. Most of the convective moistening in the 10–40∘ N range comes from convective ice evaporation occurring at the same latitudes. A small contribution to the moistening comes from convective ice evaporation occurring between 10∘ S and 10∘ N. Within the 10–40∘ N band, the Asian monsoon region is the most important region for convective moistening by ice evaporation during boreal summer and autumn.


2014 ◽  
Vol 71 (4) ◽  
pp. 1305-1322 ◽  
Author(s):  
David A. Ortland ◽  
M. Joan Alexander

Abstract Latent heating estimates derived from rainfall observations are used to construct model experiments that isolate equatorial waves forced by tropical convection from midlatitude synoptic-scale waves. These experiments are used to demonstrate that quasi-stationary equatorial Rossby waves forced by latent heating drive most of the observed residual-mean upwelling across the tropopause transition layer within 15° of the equator. The seasonal variation of the equatorial waves and the mean meridional upwelling that they cause is examined for two full years from 2006 to 2007. Changes in equatorial Rossby wave propagation through seasonally varying mean winds are the primary mechanism for producing an annual variation in the residual-mean upwelling. In the tropical tropopause layer, averaged within 15° of the equator and between 90 and 190 hPa, the annual cycle varies between a maximum upwelling of 0.4 mm s−1 during boreal winter and spring and a minimum of 0.2 mm s−1 during boreal summer. This variability seems to be due to small changes in the mean wind speed in the tropics. Seasonal variations in latent heating have only a relatively minor effect on seasonal variations in tropical tropopause upwelling. In addition, Kelvin waves drive a small downward component of the total circulation over the equator that may be modulated by the quasi-biennial oscillation.


2021 ◽  
Vol 21 (20) ◽  
pp. 15493-15518
Author(s):  
Jing Feng ◽  
Yi Huang

Abstract. The tropical tropopause layer (TTL) is the transition layer between the troposphere and the stratosphere. Tropical cyclones may impact the TTL by perturbing the vertical distributions of cloud, temperature, and water vapor. This study combines several A-Train instruments, including radar from CloudSat, lidar from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, and the Atmospheric Infrared Sounder (AIRS) on the Aqua satellite, to detect signatures of cyclone impacts on the distribution patterns of cloud, water vapor, temperature, and radiation by compositing these thermodynamic fields relative to the cyclone center location. Based on the CloudSat 2B-CLDCLASS-LIDAR product, this study finds that tropical cyclone events considerably increase the occurrence frequencies of TTL clouds, in the form of cirrus clouds above a clear troposphere. The amount of TTL cloud ice, however, is found to be mostly contributed by overshooting deep convection that penetrates the base of the TTL at 16 km. To overcome the lack of temperature and water vapor products in cloudy conditions, this study implements a synergistic method that retrieves temperature, water vapor, ice water content, and effective radius simultaneously by incorporating observations from AIRS, CloudSat, and CALIPSO. Using the synergistic method, we find a vertically oscillating pattern of temperature anomalies above tropical cyclones, with warming beneath the cloud top (around 16 km) and cooling above. Based on water vapor profiles retrieved by the synergistic method, we find that the layer integrated water vapor (LIWV) above 16 km is higher above tropical cyclones, especially above overshooting deep convective clouds, compared to climatological values. Moreover, we find that the longwave and net radiative cooling effect of clouds prevails within 1000 km of tropical cyclone centers. The radiative heating effects of clouds from the CloudSat 2B-FLXHR-LIDAR product are well differentiated by the collocated brightness temperature of an infrared window channel from the collocated AIRS L1B product. By performing instantaneous radiative heating rate calculations, we further find that TTL hydration is usually associated with radiative cooling of the TTL, which inhibits the diabatic ascent of moist air across isentropic surfaces to the stratosphere. Therefore, the radiative balance of the TTL under the impact of the cyclone does not favor the maintenance of moist anomalies in the TTL or transporting water vertically to the stratosphere.


2021 ◽  
Author(s):  
Jing Feng ◽  
Yi Huang

Abstract. The tropical tropopause layer (TTL) is the transition layer between the troposphere and the stratosphere. Tropical cyclones may impact the TTL by perturbing the vertical distributions of cloud, temperature, and water vapor, although this impact is poorly quantified due to the lack of collocated data. To address this problem, we implement a synergistic retrieval approach to obtain the thermodynamic profiles and ice water content above thick high-level clouds using the A-Train satellite measurements that pass over the tropical cyclones. This study detects the signature of cyclone impact on the distribution patterns of cloud, water vapor, temperature, and radiation by compositing these thermodynamic fields with respect to cyclone center locations. It is found that tropical cyclone events considerably increase the occurrence of TTL clouds, in the form of cirrus clouds above a clear troposphere. The amount of TTL cloud ice, however, is found to be mostly contributed by overshooting deep convections that penetrate the bottom of TTL. Using the synergistic retrieval method, we find a vertically oscillating pattern of temperature anomalies above tropical cyclones, with warming beneath the cloud top (around 16 km) and cooling above. The atmospheric column above 16 km is generally hydrated by overshooting convections, although dehydration is detected above non-overshooting TTL clouds. Above overshooting deep convections, the column-integrated water vapor is found to be on average 40 % higher than the climatology. Moreover, the TTL above tropical cyclones is cooled due to longwave radiative cooling. The radiative heating rates above cyclones are well differentiated by the brightness temperature of a satellite infrared channel in the window band. Using radiative calculations, it is found that TTL hydration is usually associated with radiative cooling of the TTL, which inhibits the diabatic ascent of moist air. The radiative balance of the TTL under the impact of the cyclone, therefore, is not in favor of maintaining the moist anomalies in the TTL or transporting water vertically to the stratosphere.


2013 ◽  
Vol 13 (4) ◽  
pp. 9653-9679 ◽  
Author(s):  
M. R. Schoeberl ◽  
A. E. Dessler ◽  
T. Wang

Abstract. The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is used to further investigate processes that produce upper tropospheric and lower stratospheric water vapor anomalies. We examine the pathways parcels take from the base of the tropical tropopause layer (TTL) to the lower stratosphere. Most parcels found in the lower stratosphere arise from East Asia, the Tropical West Pacific (TWP) and the Central/South America. The belt of TTL parcel origins is very wide compared to the final dehydration zones near the top of the TTL. This is due to the convergence of rising air as a result of the stronger diabatic heating near the tropopause relative to levels above and below. The observed water vapor anomalies – both wet and dry – correspond to regions where parcels have minimal displacement from their initialization. These minimum displacement regions include the winter TWP and the Asian and American monsoons. To better understand the stratospheric water vapor concentration we introduce the water vapor spectrum and investigate the source of the wettest and driest components of the spectrum. We find that the driest air parcels that originate below the TWP, moving upward to dehydrate in the TWP cold upper troposphere. The wettest air parcels originate at the edges of the TWP as well as the summer American and Asian monsoons. The wet air parcels are important since they skew the mean stratospheric water vapor distribution toward higher values. Both TWP cold temperatures that produce dry parcels as well as extra-TWP processes that control the wet parcels determine stratospheric water vapor.


2020 ◽  
Vol 33 (15) ◽  
pp. 5527-5542
Author(s):  
Louis Rivoire ◽  
Thomas Birner ◽  
John A. Knaff ◽  
Natalie Tourville

AbstractA ubiquitous cold signal near the tropopause, here called “tropopause layer cooling” (TLC), has been documented in deep convective regions such as tropical cyclones (TCs). Temperature retrievals from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) reveal cooling of order 0.1–1 K day−1 on spatial scales of order 1000 km above TCs. Data from the Cloud Profiling Radar (onboard CloudSat) and from the Cloud–Aerosol Lidar with Orthogonal Polarization [onboard the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] are used to analyze cloud distributions associated with TCs. Evidence is found that convective clouds within TCs reach the upper part of the tropical tropopause layer (TTL) more frequently than do convective clouds outside TCs, raising the possibility that convective clouds within TCs and associated cirrus clouds modulate TLC. The contribution of clouds to radiative heating rates is then quantified using the CloudSat and CALIPSO datasets: in the lower TTL (below the tropopause), clouds produce longwave cooling of order 0.1–1 K day−1 inside the TC main convective region, and longwave warming of order 0.01–0.1 K day−1 outside; in the upper TTL (near and above the tropopause), clouds produce longwave cooling of the same order as TLC inside the TC main convective region, and up to one order of magnitude smaller outside. Considering that clouds also produce shortwave warming, it is suggested that cloud radiative effects inside and outside TCs only explain modest amounts of TLC while other processes must provide the remaining cooling.


2007 ◽  
Vol 7 (2) ◽  
pp. 5515-5552 ◽  
Author(s):  
C. Ren ◽  
A. R. MacKenzie ◽  
C. Schiller ◽  
G. Shur ◽  
V. Yushkov

Abstract. We have developed a Lagrangian air-parcel cirrus model (LACM), to diagnose the processes controlling water in the tropical tropopause layer (TTL). LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the water vapour mixing ratio in an air parcel to the value at the point in the 4-D analysis/forecast data used to generate the trajectories, but only when certain conditions, indicative of convection, are satisfied. These conditions are imposed to confine what processes contribute to rehydration. The conditions act to restrict rehydration of the Lagrangian air parcels to regions where convective transport of water vapour from below is significant, at least to the extent that the analysis/forecast captures this process. The inclusion of hydration and dehydration mechanisms in LACM results in total water fields near tropical convection that have more of the "stripey" character of satellite observations of high cloud, than do either the ECMWF analysis or trajectories without microphysics. The mixing ratios of total water in the TTL, measured by a high-altitude aircraft over Brazil (during the TROCCINOX campaign), have been reconstructed by LACM using trajectories generated from ECMWF analysis. Two other Lagrangian reconstructions are also tested: linear interpolation of ECMWF analysed specific humidity onto the aircraft flight track, and instantaneous dehydration to the saturation vapour pressure over ice along trajectories. The reconstructed total water mixing ratios along aircraft flight tracks are compared with observations from the FISH total water hygrometer. Process-oriented analysis shows that modelled cirrus cloud events are responsible for dehydrating the air parcels coming from lower levels, resulting in total water mixing ratios as low as 2 μmol/mol. Without adding water back to some of the trajectories, the LACM and instantaneous-dehydration reconstructions have a dry bias. The interpolated-ECMWF reconstruction does not suffer this dry bias, because convection in the ECMWF model moistens air parcels dramatically, by pumping moist air upwards. This indicates that the ECMWF model captures the gross features of the rehydration of air in the TTL by convection. Overall, the ECMWF models captures well the exponential decrease in total water mixing ratio with height above 250 hPa, so that all the reconstruction techniques capture more than 75% of the variance in the measured total water mixing ratios over the depth of the TTL. We have therefore developed a simple method for re-setting the total water in LACM using the ECMWF-analysed specific humidity in regions where the model predicts convection. By picking up the main contributing processes to dehydration and rehydration in the TTL, LACM reconstructs total water mixing ratios along aircraft flight tracks at the top of the TTL, close to the cold point, that are always in substantially better agreement with observations than instantaneous-dehydration reconstructions, and better than the ECMWF analysis for regions of high relative humidity and cloud.


2020 ◽  
Vol 20 (17) ◽  
pp. 10565-10586
Author(s):  
Stephanie Evan ◽  
Jerome Brioude ◽  
Karen Rosenlof ◽  
Sean M. Davis ◽  
Holger Vömel ◽  
...  

Abstract. Balloon-borne measurements of cryogenic frost-point hygrometer (CFH) water vapor, ozone and temperature and water vapor lidar measurements from the Maïdo Observatory on Réunion Island in the southwest Indian Ocean (SWIO) were used to study tropical cyclones' influence on tropical tropopause layer (TTL) composition. The balloon launches were specifically planned using a Lagrangian model and Meteosat-7 infrared images to sample the convective outflow from tropical storm (TS) Corentin on 25 January 2016 and tropical cyclone (TC) Enawo on 3 March 2017. Comparing the CFH profile to Aura's Microwave Limb Sounder's (MLS) monthly climatologies, water vapor anomalies were identified. Positive anomalies of water vapor and temperature, and negative anomalies of ozone between 12 and 15 km in altitude (247 to 121 hPa), originated from convectively active regions of TS Corentin and TC Enawo 1 d before the planned balloon launches according to the Lagrangian trajectories. Near the tropopause region, air masses on 25 January 2016 were anomalously dry around 100 hPa and were traced back to TS Corentin's active convective region where cirrus clouds and deep convective clouds may have dried the layer. An anomalously wet layer around 68 hPa was traced back to the southeast Indian Ocean where a monthly water vapor anomaly of 0.5 ppmv was observed. In contrast, no water vapor anomaly was found near or above the tropopause region on 3 March 2017 over Maïdo as the tropopause region was not downwind of TC Enawo. This study compares and contrasts the impact of two tropical cyclones on the humidification of the TTL over the SWIO. It also demonstrates the need for accurate balloon-borne measurements of water vapor, ozone and aerosols in regions where TTL in situ observations are sparse.


2005 ◽  
Vol 18 (2) ◽  
pp. 287-301 ◽  
Author(s):  
C-P. Chang ◽  
Zhuo Wang ◽  
John McBride ◽  
Ching-Hwang Liu

Abstract In general, the Bay of Bengal, Indochina Peninsula, and Philippines are in the Asian summer monsoon regime while the Maritime Continent experiences a wet monsoon during boreal winter and a dry season during boreal summer. However, the complex distribution of land, sea, and terrain results in significant local variations of the annual cycle. This work uses historical station rainfall data to classify the annual cycles of rainfall over land areas, the TRMM rainfall measurements to identify the monsoon regimes of the four seasons in all of Southeast Asia, and the QuikSCAT winds to study the causes of the variations. The annual cycle is dominated largely by interactions between the complex terrain and a simple annual reversal of the surface monsoonal winds throughout all monsoon regions from the Indian Ocean to the South China Sea and the equatorial western Pacific. The semiannual cycle is comparable in magnitude to the annual cycle over parts of the equatorial landmasses, but only a very small region reflects the twice-yearly crossing of the sun. Most of the semiannual cycle appears to be due to the influence of both the summer and the winter monsoon in the western part of the Maritime Continent where the annual cycle maximum occurs in fall. Analysis of the TRMM data reveals a structure whereby the boreal summer and winter monsoon rainfall regimes intertwine across the equator and both are strongly affected by the wind–terrain interaction. In particular, the boreal winter regime extends far northward along the eastern flanks of the major island groups and landmasses. A hypothesis is presented to explain the asymmetric seasonal march in which the maximum convection follows a gradual southeastward progression path from the Asian summer monsoon to the Asian winter monsoon but experiences a sudden transition in the reverse. The hypothesis is based on the redistribution of mass between land and ocean areas during spring and fall that results from different land–ocean thermal memories. This mass redistribution between the two transition seasons produces sea level patterns leading to asymmetric wind–terrain interactions throughout the region, and a low-level divergence asymmetry in the region that promotes the southward march of maximum convection during boreal fall but opposes the northward march during boreal spring.


2021 ◽  
Author(s):  
Kunihiko Kodera ◽  
Nawo Eguchi ◽  
Rei Ueyama ◽  
Beatriz Funatsu ◽  
Marco Gaetani ◽  
...  

<p>Previous studies have suggested that the recent increase in tropical extreme deep convection, in particular over Asia and Africa during the boreal summer, has occurred in association with a cooling in the tropical lower stratosphere. The present study is focused on the Sahel region of West Africa, where an increased occurrence of extreme precipitation events has been reported over recent decades. The results show that the changes since the 1980s involve a cooling trend in the tropical lower stratosphere and tropopause layer, combined with a warming in the troposphere. This feature is similar to that which might result from increased greenhouse gas levels. It is suggested that the decrease in the vertical temperature gradient in the tropical tropopause region enhances extreme deep convection where penetrating convection is frequent, whereas tropospheric warming suppresses the shallower convection. The essential feature of the recent changes over the tropics is therefore the depth of convection, rather than the total amount of surface precipitation. This could enhance cooling in the lower stratosphere through decrease in ozone concentration.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document