Inertia–Gravity Waves Spontaneously Generated by Jets and Fronts. Part I: Different Baroclinic Life Cycles

2007 ◽  
Vol 64 (7) ◽  
pp. 2502-2520 ◽  
Author(s):  
Riwal Plougonven ◽  
Chris Snyder

Abstract The spontaneous generation of inertia–gravity waves in idealized life cycles of baroclinic instability is investigated using the Weather Research and Forecasting Model. Two substantially different life cycles of baroclinic instability are obtained by varying the initial zonal jet. The wave generation depends strongly on the details of the baroclinic wave’s development. In the life cycle dominated by cyclonic behavior, the most conspicuous gravity waves are excited by the upper-level jet and are broadly consistent with previous simulations of O’Sullivan and Dunkerton. In the life cycle that is dominated by anticyclonic behavior, the most conspicuous gravity waves even in the stratosphere are excited by the surface fronts, although the fronts are no stronger than in the cyclonic life cycle. The anticyclonic life cycle also reveals waves in the lower stratosphere above the upper-level trough of the baroclinic wave; these waves have not been previously identified in idealized simulations. The sensitivities of the different waves to both resolution and dissipation are discussed.

2017 ◽  
Vol 74 (12) ◽  
pp. 4241-4263 ◽  
Author(s):  
Mohammad Mirzaei ◽  
Ali R. Mohebalhojeh ◽  
Christoph Zülicke ◽  
Riwal Plougonven

Abstract Quantification of inertia–gravity waves (IGWs) generated by upper-level jet–surface front systems and their parameterization in global models of the atmosphere relies on suitable methods to estimate the strength of IGWs. A harmonic divergence analysis (HDA) that has been previously employed for quantification of IGWs combines wave properties from linear dynamics with a sophisticated statistical analysis to provide such estimates. A question of fundamental importance that arises is how the measures of IGW activity provided by the HDA are related to the measures coming from the wave–vortex decomposition (WVD) methods. The question is addressed by employing the nonlinear balance relations of the first-order δ–γ, the Bolin–Charney, and the first- to third-order Rossby number expansion to carry out WVD. The global kinetic energy of IGWs given by the HDA and WVD are compared in numerical simulations of moist baroclinic waves by the Weather Research and Forecasting (WRF) Model in a channel on the f plane. The estimates of the HDA are found to be 2–3 times smaller than those of the optimal WVD. This is in part due to the absence of a well-defined scale separation between the waves and vortical flows, the IGW estimates by the HDA capturing only the dominant wave packets and with limited scales. It is also shown that the difference between the HDA and WVD estimates is related to the width of the IGW spectrum.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1141
Author(s):  
Steven Greco ◽  
George D. Emmitt ◽  
Alice DuVivier ◽  
Keith Hines ◽  
Michael Kavaya

During October–November 2014 and May 2015, NASA sponsored and conducted a pair of airborne campaigns called Polar Winds to investigate atmospheric circulations, particularly in the boundary layer, over the Arctic using NASA’s Doppler Aerosol WiNd (DAWN) lidar. A description of the campaigns, the DAWN instrument, wind retrieval methods and data processing is provided. During the campaigns, the DAWN instrument faced backscatter sensitivity issues in the low aerosol conditions that were fairly frequent in the 2–6 km altitude range. However, when DAWN was able to make measurements, comparisons with dropsondes show good agreement and very low bias and supports the use of an airborne Doppler wind lidar such as DAWN that can provide profiles with high velocity precision, ~65 m vertical resolution and horizontal spacing as fine as 3–7 km. Case study analyses of a Greenland tip jet, barrier winds and an upper level jet are presented and show how, despite sensitivity issues, DAWN data can be confidently used in diagnostic studies of dynamic features in the Arctic. Comparisons with both an operational and research Weather Research and Forecasting (WRF) model for these events also show the potential for utilization in model validation. The sensitivity issues of the DAWN laser have since been corrected.


2017 ◽  
Vol 9 (3) ◽  
pp. 284-293 ◽  
Author(s):  
Ajil Kottayil ◽  
Karathazhiyath Satheesan ◽  
Kesavapillai Mohankumar ◽  
Sivan Chandran ◽  
Titu Samson

2007 ◽  
Vol 64 (2) ◽  
pp. 479-496 ◽  
Author(s):  
Matthew A. H. Wittman ◽  
Andrew J. Charlton ◽  
Lorenzo M. Polvani

Abstract Using a hierarchy of models, and observations, the effect of vertical shear in the lower stratosphere on baroclinic instability in the tropospheric midlatitude jet is examined. It is found that increasing stratospheric shear increases the phase speed of growing baroclinic waves, increases the growth rate of modes with low synoptic wavenumbers, and decreases the growth rate of modes with higher wavenumbers. The meridional structure of the linear modes, and their acceleration of the zonal mean jet, changes with increasing stratospheric shear, but in a way that apparently contradicts the observed stratosphere–troposphere northern annular mode (NAM) connection. This contradiction is resolved at finite amplitude. In nonlinear life cycle experiments it is found that increasing stratospheric shear, without changing the jet structure in the troposphere, produces a transition from anticyclonic (LC1) to cyclonic (LC2) behavior at wavenumber 7. All life cycles with wavenumbers lower than 7 are LC1, and all with wavenumber greater than 7 are LC2. For the LC1 life cycles, the effect of increasing stratospheric shear is to increase the poleward displacement of the zonal mean jet by the eddies, which is consistent with the observed stratosphere–troposphere NAM connection. Finally, it is found that the connection between high stratospheric shear and high-tropospheric NAM is present by NCEP–NCAR reanalysis data.


1984 ◽  
Vol 41 (15) ◽  
pp. 2359-2367 ◽  
Author(s):  
Yasuyuki Maekawa ◽  
Shoichiro Fukao ◽  
Toru Sato ◽  
Susumu Kato ◽  
Ronald F. Woodman

2015 ◽  
Vol 72 (5) ◽  
pp. 2109-2130 ◽  
Author(s):  
Ryosuke Shibuya ◽  
Kaoru Sato ◽  
Yoshihiro Tomikawa ◽  
Masaki Tsutsumi ◽  
Toru Sato

Abstract Multiple tropopauses (MTs) defined by the World Meteorological Organization are frequently detected from autumn to spring at Syowa Station (69.0°S, 39.6°E). The dynamical mechanism of MT events was examined by observations of the first mesosphere–stratosphere–troposphere (MST) radar in the Antarctic, the Program of the Antarctic Syowa MST/Incoherent Scatter (IS) Radar (PANSY), and of radiosondes on 8–11 April 2013. The MT structure above the first tropopause is composed of strong temperature fluctuations. By a detailed analysis of observed three-dimensional wind and temperature fluctuation components, it is shown that the phase and amplitude relations between these components are consistent with the theoretical characteristics of linear inertia–gravity waves (IGWs). Numerical simulations were performed by using a nonhydrostatic model. The simulated MT structures and IGW parameters agree well with the observation. In the analysis using the numerical simulation data, it is seen that IGWs were generated around 65°S, 15°E and around 70°S, 15°E, propagated eastward, and reached the region above Syowa Station when the MT event was observed. These IGWs were likely radiated spontaneously from the upper-tropospheric flow around 65°S, 15°E and were forced by strong southerly surface winds over steep topography (70°S, 15°E). The MT occurrence is attributable to strong IGWs and the low mean static stability in the polar winter lower stratosphere. It is also shown that nonorographic gravity waves associated with the tropopause folding event contribute to 40% of the momentum fluxes, as shown by a gravity wave–resolving general circulation model in the lower stratosphere around 65°S. This result indicates that they are one of the key components for solving the cold-bias problem found in most climate models.


2008 ◽  
Vol 65 (5) ◽  
pp. 1622-1637 ◽  
Author(s):  
J. Vanneste

Abstract This paper discusses some of the mechanisms whereby fast inertia–gravity waves can be generated spontaneously by slow, balanced atmospheric and oceanic flows. In the small Rossby number regime relevant to midlatitude dynamics, high-accuracy balanced models, which filter out inertia–gravity waves completely, can in principle describe the evolution of suitably initialized flows up to terms that are exponentially small in the Rossby number ɛ, that is, of the form exp(−α/ɛ) for some α > 0. This suggests that the mechanisms of inertia–gravity wave generation, which are not captured by these balanced models, are also exponentially weak. This has been confirmed by explicit analytical results obtained for a few highly simplified models. These results are reviewed, and some of the exponential-asymptotic techniques that have been used in their derivation are presented. Two types of mechanisms are examined: spontaneous-generation mechanisms, which generate exponentially small waves from perfectly balanced initial conditions, and unbalanced instability mechanisms, which amplify unbalanced initial perturbations of steady flows. The relevance of the results to realistic flows is discussed.


1999 ◽  
Vol 17 (1) ◽  
pp. 115-121 ◽  
Author(s):  
L. Thomas ◽  
R. M. Worthington ◽  
A. J. McDonald

Abstract. Radar measurements at Aberystwyth (52.4° N, 4.1° W) of winds at tropospheric and lower stratospheric heights are shown for 12-13 March 1994 in a region of highly curved flow, downstream of the jet maximum. The perturbations of horizontal velocity have comparable amplitudes in the troposphere and lower stratosphere with downward and upward phase propagation, respectively, in these two height regions. The sense of rotation with increasing height in hodographs of horizontal perturbation velocity derived for hourly intervals show downwards propagation of energy in the troposphere and upward propagation in the lower stratosphere with vertical wavelengths of 1.7 to 2.3 km. The results indicate inertia-gravity waves propagating in a direction similar to that of the jet stream but at smaller velocities. Some of the features observed contrast with those of previous observations of inertia-gravity waves propagating transverse to the jet stream. The interpretation of the hodographs to derive wave parameters has taken account of the vertical shear of the background wind transverse to the direction of wave propagation.Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; middle atmosphere dynamics; waves and tides)


2009 ◽  
Vol 66 (4) ◽  
pp. 883-901 ◽  
Author(s):  
Michael L. Waite ◽  
Chris Snyder

Abstract The atmospheric mesoscale kinetic energy spectrum is investigated through numerical simulations of an idealized baroclinic wave life cycle, from linear instability to mature nonlinear evolution and with high horizontal and vertical resolution (Δx ≈ 10 km and Δz ≈ 60 m). The spontaneous excitation of inertia–gravity waves yields a shallowing of the mesoscale spectrum with respect to the large scales, in qualitative agreement with observations. However, this shallowing is restricted to the lower stratosphere and does not occur in the upper troposphere. At both levels, the mesoscale divergent kinetic energy spectrum—a proxy for the inertia–gravity wave energy spectrum—resembles a −5/3 power law in the mature stage. Divergent kinetic energy dominates the lower stratospheric mesoscale spectrum, accounting for its shallowing. Rotational kinetic energy, by contrast, dominates the upper tropospheric spectrum and no shallowing of the full spectrum is observed. By analyzing the tendency equation for the kinetic energy spectrum, it is shown that the lower stratospheric spectrum is not governed solely by a downscale energy cascade; rather, it is influenced by the vertical pressure flux divergence associated with vertically propagating inertia–gravity waves.


Sign in / Sign up

Export Citation Format

Share Document