The Impact of Horizontal Resolution on the Tropical Heat Budget in an Atlantic Ocean Model

2005 ◽  
Vol 18 (6) ◽  
pp. 841-851 ◽  
Author(s):  
Markus Jochum ◽  
Raghu Murtugudde ◽  
Raffaele Ferrari ◽  
Paola Malanotte-Rizzoli

Abstract An ocean general circulation model (OGCM) of the tropical Atlantic is coupled to an advective atmospheric boundary layer model. This configuration is used to investigate the hypothesis that resolving tropical instability waves (TIWs) in OGCMs will remove the equatorial cold bias that is a feature common to coarse-resolution OGCMs. It is shown that current eddy parameterizations cannot capture the TIW heat flux because diffusion in coarse-resolution OGCMs removes heat from the warm pool to heat the equatorial cold tongue, whereas TIWs draw their heat mostly from the atmosphere. Thus, they can bring more heat to the equatorial cold tongue without cooling the warm pool, and the SST in the warm pool is higher and more realistic. Contrary to expectations, the SST in the equatorial cold tongue is not significantly improved. The equatorial warming due to TIWs is slightly greater than the warming due to diffusion, but this increased equatorial heat flux in the high-resolution experiment is compensated by increased equatorial entrainment there. This is attributed to the Equatorial Undercurrent being stronger, thereby increasing the entrainment rate through shear instability. Thus, higher resolution does not significantly increase the total oceanic heat flux convergence in the equatorial mixed layer.

2020 ◽  
Author(s):  
Na-Yeon Shin ◽  
Jong-Seong Kug ◽  
Felicity S. McCormack ◽  
Neil J. Holbrook

<p>   In the past decades, our understanding of the ENSO phenomenon increased steadily. Especially, one of the most interesting topics was the El Niño type because of the different global impacts. The classic classification is the two types of the El Niño and there are various terms to refer this. The conventional El Niño is called the Cold tongue El Niño or the Eastern pacific El Niño. And the other type of the El Niño is called the Warm pool El Niño, the Central pacific El Niño, the El Niño Modoki or the dateline El Niño. However, in Coupled Model Intercomparison Project version 5 (CMIP5) Coupled General Circulation Models (CGCMs) results, those have been shown the Double peaked El Niño events which are the new type of the El Niño due to the climatological cold tongue bias. Double peaked El Niño events are defined as a positive sea surface temperature anomalies are separated into two centers (in Western and Eastern Pacific) and grow individually and simultaneously, and the peak of SST anomalies exceeds the threshold.</p><p>   Double peaked El Niño events are found in not only the models, but also the observations. But there are no dynamical analysis of observations. In this study, the mechanism giving rise to Double peaked El Niño in observation is examined by analyzing the mixed layer heat budget equation and comparing with the Warm Pool El Niño and Cold tongue El Niño.</p><p>   The warm SST anomalies of the western peak and the eastern peak are caused by different dynamic mechanism. Western peaks of Double peaked El Niño are similar to the Warm Pool El Niño. Those can be developed by Zonal advection feedback terms and negative anomalous wind speed, whereas eastern peaks of Double peaked El Niño are different from Warm pool El Niño. Thermocline feedback term considerably contribute to the occurrence of eastern peak. Differences of intensity of the precipitation(4-8N, 195-225E) derive other significant differences of the zonal wind stress(5S-5N, 170-200E), sea level(5S-5N, 230-250E) and zonal current(5S-5N, 230-250E). Thus, the process above can induce the eastern peak of the Double peaked El Niño.</p>


2010 ◽  
Vol 67 (7) ◽  
pp. 2194-2211 ◽  
Author(s):  
Minoru Chikira

Abstract The impact of a new cumulus parameterization developed in Part I of this paper on climatology in an atmospheric general circulation model (AGCM) is compared with that of the Arakawa–Schubert scheme. The parameterization is characterized by a vertically variable entrainment rate depending on the surrounding environment. Two kinds of formulations on entrainment rate are tested and produce similar results in the AGCM. The results show reduction of precipitation over land and increase over the sea, weakening of the southern side of the double intertropical convergence zone (ITCZ) over the southeastern Pacific, and better representation of the South Pacific convergence zone (SPCZ), all of which are consistent with observations. The population of cumulus congestus is significantly increased, thereby inducing additional heating in the lower troposphere. The diurnal variation over land shows that deep convection tends to be suppressed earlier because of the reduction of convective available potential energy and tropospheric humidity caused by the convective activity itself. An analysis of the daily outputs suggests that a better representation of the cumulus congestus and sensitivity of the scheme to tropospheric humidity are important for the realistic representation of the precipitation over the double ITCZ and SPCZ.


2012 ◽  
Vol 3 (1) ◽  
pp. 259-278 ◽  
Author(s):  
M. Mengel ◽  
A. Levermann ◽  
C.-F. Schleussner ◽  
A. Born

Abstract. Direct observations, satellite measurements and paleorecords reveal strong variability in the Atlantic subpolar gyre on various time scales. Here we show that variations of comparable amplitude can only be simulated in a coupled climate model in the proximity of a dynamical threshold. The threshold and the associated dynamic response is due to a positive feedback involving increased salt transport in the subpolar gyre and enhanced deep convection in its center. A series of sensitivity experiments is performed with a coarse resolution ocean general circulation model coupled to a statistical-dynamical atmosphere model which in itself does not produce atmospheric variability. To simulate the impact of atmospheric variability, the model system is perturbed with freshwater forcing of varying but small amplitude and multidecadal to centennial periodicity, and observational variations in wind stress. While both freshwater and wind-stress-forcing have a small direct effect on the strength of the subpolar gyre, the magnitude of the gyre's response is strongly increased in the vicinity of the threshold. Our results thus indicate that baroclinic self-amplification in the North Atlantic ocean can play an important role in presently observed SPG variability and thereby North Atlantic climate variability on multidecadal scales.


2012 ◽  
Vol 3 (2) ◽  
pp. 189-197 ◽  
Author(s):  
M. Mengel ◽  
A. Levermann ◽  
C.-F. Schleussner ◽  
A. Born

Abstract. Direct observations, satellite measurements and paleo records reveal strong variability in the Atlantic subpolar gyre on various time scales. Here we show that variations of comparable amplitude can only be simulated in a coupled climate model in the proximity of a dynamical threshold. The threshold and the associated dynamic response is due to a positive feedback involving increased salt transport in the subpolar gyre and enhanced deep convection in its centre. A series of sensitivity experiments is performed with a coarse resolution ocean general circulation model coupled to a statistical-dynamical atmosphere model which in itself does not produce atmospheric variability. To simulate the impact of atmospheric variability, the model system is perturbed with freshwater forcing of varying, but small amplitude and multi-decadal to centennial periodicities and observational variations in wind stress. While both freshwater and wind-stress-forcing have a small direct effect on the strength of the subpolar gyre, the magnitude of the gyre's response is strongly increased in the vicinity of the threshold. Our results indicate that baroclinic self-amplification in the North Atlantic ocean can play an important role in presently observed SPG variability and thereby North Atlantic climate variability on multi-decadal scales.


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


1997 ◽  
Vol 25 ◽  
pp. 327-332 ◽  
Author(s):  
Marika M. Holland ◽  
Julie L. Schramm ◽  
Judith A. Curry

Due to large uncertainties in many of the parameters used to model sea ice, it is possible that models with significantly different physical processes can be tuned to obtain realistic present-day simulations. However, in studies of climate change, it is the response of the model it various perturbations that is important, in studies response can be significantly different in sea-ice models that include or exclude various physical feedback mechanisms. Because simplifications in sea-ice physics are necessary for general circulation model experiments, it is important to assess which physical processes are essential for the accurate determination of the sensitivity of the ice pack to climate perturbations. We have attempted to address these issues using a new coupled ice-thickness distribution ocean mixed-layer model. The sensitivity of the model to surface heat-flux perturbations is examined and the importance of the ice ocean and ice-albedo feedback mechanisms in determining this sensitivity is analyzed. We find that the ice ocean and ice-albedo feedback processes are not mutually exclusive, and that they both significantly alter the model response to surface heat flux perturbations.


Ocean Science ◽  
2014 ◽  
Vol 10 (6) ◽  
pp. 967-975 ◽  
Author(s):  
A. J. G. Nurser ◽  
S. Bacon

Abstract. The first (and second) baroclinic deformation (or Rossby) radii are presented north of ~60° N, focusing on deep basins and shelf seas in the high Arctic Ocean, the Nordic seas, Baffin Bay, Hudson Bay and the Canadian Arctic Archipelago, derived from climatological ocean data. In the high Arctic Ocean, the first Rossby radius increases from ~5 km in the Nansen Basin to ~15 km in the central Canadian Basin. In the shelf seas and elsewhere, values are low (1–7 km), reflecting weak density stratification, shallow water, or both. Seasonality strongly impacts the Rossby radius only in shallow seas, where winter homogenization of the water column can reduce it to below 1 km. Greater detail is seen in the output from an ice–ocean general circulation model, of higher resolution than the climatology. To assess the impact of secular variability, 10 years (2003–2012) of hydrographic stations along 150° W in the Beaufort Gyre are also analysed. The first-mode Rossby radius increases over this period by ~20%. Finally, we review the observed scales of Arctic Ocean eddies.


2013 ◽  
Vol 9 (2) ◽  
pp. 871-886 ◽  
Author(s):  
M. Casado ◽  
P. Ortega ◽  
V. Masson-Delmotte ◽  
C. Risi ◽  
D. Swingedouw ◽  
...  

Abstract. In mid and high latitudes, the stable isotope ratio in precipitation is driven by changes in temperature, which control atmospheric distillation. This relationship forms the basis for many continental paleoclimatic reconstructions using direct (e.g. ice cores) or indirect (e.g. tree ring cellulose, speleothem calcite) archives of past precipitation. However, the archiving process is inherently biased by intermittency of precipitation. Here, we use two sets of atmospheric reanalyses (NCEP (National Centers for Environmental Prediction) and ERA-interim) to quantify this precipitation intermittency bias, by comparing seasonal (winter and summer) temperatures estimated with and without precipitation weighting. We show that this bias reaches up to 10 °C and has large interannual variability. We then assess the impact of precipitation intermittency on the strength and stability of temporal correlations between seasonal temperatures and the North Atlantic Oscillation (NAO). Precipitation weighting reduces the correlation between winter NAO and temperature in some areas (e.g. Québec, South-East USA, East Greenland, East Siberia, Mediterranean sector) but does not alter the main patterns of correlation. The correlations between NAO, δ18O in precipitation, temperature and precipitation weighted temperature are investigated using outputs of an atmospheric general circulation model enabled with stable isotopes and nudged using reanalyses (LMDZiso (Laboratoire de Météorologie Dynamique Zoom)). In winter, LMDZiso shows similar correlation values between the NAO and both the precipitation weighted temperature and δ18O in precipitation, thus suggesting limited impacts of moisture origin. Correlations of comparable magnitude are obtained for the available observational evidence (GNIP (Global Network of Isotopes in Precipitation) and Greenland ice core data). Our findings support the use of archives of past δ18O for NAO reconstructions.


Sign in / Sign up

Export Citation Format

Share Document