scholarly journals Impact of precipitation intermittency on NAO-temperature signals in proxy records

2013 ◽  
Vol 9 (2) ◽  
pp. 871-886 ◽  
Author(s):  
M. Casado ◽  
P. Ortega ◽  
V. Masson-Delmotte ◽  
C. Risi ◽  
D. Swingedouw ◽  
...  

Abstract. In mid and high latitudes, the stable isotope ratio in precipitation is driven by changes in temperature, which control atmospheric distillation. This relationship forms the basis for many continental paleoclimatic reconstructions using direct (e.g. ice cores) or indirect (e.g. tree ring cellulose, speleothem calcite) archives of past precipitation. However, the archiving process is inherently biased by intermittency of precipitation. Here, we use two sets of atmospheric reanalyses (NCEP (National Centers for Environmental Prediction) and ERA-interim) to quantify this precipitation intermittency bias, by comparing seasonal (winter and summer) temperatures estimated with and without precipitation weighting. We show that this bias reaches up to 10 °C and has large interannual variability. We then assess the impact of precipitation intermittency on the strength and stability of temporal correlations between seasonal temperatures and the North Atlantic Oscillation (NAO). Precipitation weighting reduces the correlation between winter NAO and temperature in some areas (e.g. Québec, South-East USA, East Greenland, East Siberia, Mediterranean sector) but does not alter the main patterns of correlation. The correlations between NAO, δ18O in precipitation, temperature and precipitation weighted temperature are investigated using outputs of an atmospheric general circulation model enabled with stable isotopes and nudged using reanalyses (LMDZiso (Laboratoire de Météorologie Dynamique Zoom)). In winter, LMDZiso shows similar correlation values between the NAO and both the precipitation weighted temperature and δ18O in precipitation, thus suggesting limited impacts of moisture origin. Correlations of comparable magnitude are obtained for the available observational evidence (GNIP (Global Network of Isotopes in Precipitation) and Greenland ice core data). Our findings support the use of archives of past δ18O for NAO reconstructions.

2012 ◽  
Vol 8 (5) ◽  
pp. 4957-4987
Author(s):  
M. Casado ◽  
P. Ortega ◽  
V. Masson-Delmotte ◽  
C. Risi ◽  
D. Swingedouw ◽  
...  

Abstract. In mid and high latitudes, the stable isotope ratio in precipitation is driven by changes in temperature, which controls atmospheric distillation. This relationship forms the basis for many continental paleoclimatic reconstructions using direct (e.g. ice cores) or indirect (e.g. tree ring cellulose, speleothem calcite) archives of past precipitation. However, the archiving process is inherently biased by precipitation intermittency. Here, we use two sets of atmospheric reanalyses (NCEP and ERA-interim) to quantify this precipitation intermittency bias, by comparing seasonal (winter and summer) temperatures estimated with and without precipitation weighting. We show that this bias can reach locally 6 to 10 °C and has large inter-annual variability. We then assess the impact of precipitation intermittency on the strength and stability of temporal correlations between seasonal temperatures and the North Atlantic Oscillation. Precipitation weighting reduces the correlation between winter NAO and temperature in some areas (e.g. Québec, South-East USA, East Greenland, East Siberia, Mediterranean sector) but does not alter the main patterns of correlation. The importance of the precipitation intermittency bias with respect to other processes affecting precipitation isotopic composition is further analysed using outputs of an atmospheric general circulation model enabled with stable isotopes and nudged to reanalyses (LMDZiso). In winter, LMDZiso shows similar correlation values between the NAO and both the precipitation weighted temperature and precipitation δ18O, thus suggesting limited impacts of moisture origin. Correlations of comparable magnitude are obtained for the available observational evidence (GNIP and Greenland ice core data). Our findings support the use of archives of past precipitation δ18O for past NAO reconstructions.


2019 ◽  
Vol 116 (10) ◽  
pp. 4099-4104 ◽  
Author(s):  
Louise C. Sime ◽  
Peter O. Hopcroft ◽  
Rachael H. Rhodes

Greenland ice cores provide excellent evidence of past abrupt climate changes. However, there is no universally accepted theory of how and why these Dansgaard–Oeschger (DO) events occur. Several mechanisms have been proposed to explain DO events, including sea ice, ice shelf buildup, ice sheets, atmospheric circulation, and meltwater changes. DO event temperature reconstructions depend on the stable water isotope (δ18O) and nitrogen isotope measurements from Greenland ice cores: interpretation of these measurements holds the key to understanding the nature of DO events. Here, we demonstrate the primary importance of sea ice as a control on Greenland ice coreδ18O: 95% of the variability inδ18O in southern Greenland is explained by DO event sea ice changes. Our suite of DO events, simulated using a general circulation model, accurately captures the amplitude ofδ18O enrichment during the abrupt DO event onsets. Simulated geographical variability is broadly consistent with available ice core evidence. We find an hitherto unknown sensitivity of theδ18O paleothermometer to the magnitude of DO event temperature increase: the change inδ18O per Kelvin temperature increase reduces with DO event amplitude. We show that this effect is controlled by precipitation seasonality.


2016 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract. Insolation changes during the Eemian (the last interglacial period, 129–116 000 years before present) resulted in warmer than present conditions in the Arctic region. The NEEM ice core record suggests warming of 8±4 K in northwestern Greenland based on water stable isotopes. Here we use general circulation model experiments to investigate the causes of the Eemian warming in Greenland. Simulations of the atmospheric response to combinations of Eemian insolation and pre-industrial oceanic conditions and vice versa, are used to disentangle the impacts of the insolation change and the related changes in sea surface temperatures and sea ice conditions. The changed oceanic conditions cause warming throughout the year, prolonging the impact of the summertime insolation increase. Consequently, the oceanic conditions cause annual mean warming of 2 K at the NEEM site, whereas the insolation alone causes an insignificant change. Taking the precipitation changes into account, however, the insolation and oceanic changes cause more comparable increases in the precipitation-weighted temperature, implying that both contributions are important for the ice core record at the NEEM site. The simulated Eemian precipitation-weighted warming of 2.4 K at the NEEM site is low compared to the ice core reconstruction, partially due to missing feedbacks related to ice sheet changes. Surface mass balance calculations with an energy balance model indicate potential mass loss in the north and southwestern parts of the ice sheet. The oceanic conditions favor increased accumulation in the southeast, while the insolation appears to be the dominant cause of the expected ice sheet reduction.


2012 ◽  
Vol 9 (9) ◽  
pp. 12895-12950
Author(s):  
M.-N. Woillez ◽  
M. Kageyama ◽  
N. Combourieu-Nebout ◽  
G. Krinner

Abstract. The last glacial period has been punctuated by two types of abrupt climatic events, the Dansgaard-Oeschger (DO) and Heinrich (HE) events. These events, recorded in Greenland ice and in marine sediments, involved changes in the Atlantic Meridional Overturning Circulation (AMOC) and led to major changes in the terrestrial biosphere. Here we use the dynamical global vegetation model ORCHIDEE to simulate the response of vegetation to abrupt changes in the AMOC strength. To do so, we force ORCHIDEE off-line with outputs from the IPSL_CM4 general circulation model, in which we have forced the AMOC to change by adding freshwater fluxes in the North Atlantic. We investigate the impact of a collapse and recovery of the AMOC, at different rates, and focus on Western Europe, where many pollen records are available to compare with. The impact of an AMOC collapse on the European mean temperatures and precipitations simulated by the GCM is relatively small but sufficient to drive an important regression of forests and expansion of grasses in ORCHIDEE, in qualitative agreement with pollen data for an HE event. On the contrary, a run with a rapid shift of the AMOC to an hyperactive state of 30 Sv, mimicking the warming phase of a DO event, does not exhibit a strong impact on the European vegetation compared to the glacial control state. For our model, simulating the impact of an HE event thus appears easier than simulating the abrupt transition towards the interstadial phase of a DO. For both a collapse or a recovery of the AMOC the vegetation starts to respond to climatic changes immediately but reaches equilibrium about 200 yr after the climate equilibrates, suggesting a possible bias in the climatic reconstructions based on pollen records, which assume equilibrium between climate and vegetation. However, our study does not take into account vegetation feedbacks on the atmosphere.


2008 ◽  
Vol 21 (1) ◽  
pp. 72-83 ◽  
Author(s):  
Adam A. Scaife ◽  
Chris K. Folland ◽  
Lisa V. Alexander ◽  
Anders Moberg ◽  
Jeff R. Knight

Abstract The authors estimate the change in extreme winter weather events over Europe that is due to a long-term change in the North Atlantic Oscillation (NAO) such as that observed between the 1960s and 1990s. Using ensembles of simulations from a general circulation model, large changes in the frequency of 10th percentile temperature and 90th percentile precipitation events over Europe are found from changes in the NAO. In some cases, these changes are comparable to the expected change in the frequency of events due to anthropogenic forcing over the twenty-first century. Although the results presented here do not affect anthropogenic interpretation of global and annual mean changes in observed extremes, they do show that great care is needed to assess changes due to modes of climate variability when interpreting extreme events on regional and seasonal scales. How changes in natural modes of variability, such as the NAO, could radically alter current climate model predictions of changes in extreme weather events on multidecadal time scales is also discussed.


2020 ◽  
Author(s):  
Alexandre Cauquoin ◽  
Martin Werner

<p>For several decades, the comparison of climate data with results from water isotope-enabled Atmosphere General Circulation Models (AGCMs) significantly helped to a better understanding of the processes ruling the water cycle, which is one of the main drivers of the climate variability. For the modern period, the use of AGCMs nudged with weather forecasts reanalyses is a powerful way to obtain model outputs under the same weather conditions than at the sampling time of the observations.</p><p>Here we present new isotopic simulations results from ECHAM6-wiso [1] nudged with the last reanalyses dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF), ERA5 [2], at different spatial resolutions over the period 1979-2018. Model results are evaluated against isotopic data compilations, including GNIP (Global Network of Isotopes in Precipitation [3]), speleothems [4], ice cores datasets and water vapor measurements. To quantify the impact of these reanalyses on our simulations, we also performed nudged simulations with the previous model version ECHAM5-wiso [5] by using ERA5 data and its predecessor ERA-Interim [6].</p><p>These new simulation products could be a useful contribution to the isotopic data community for the interpretation of their water isotope records and for the exploration of the mechanisms controlling the variability of the surrounding water isotopic composition.</p><p> </p><p>[1] Cauquoin et al., Clim. Past, <strong>15</strong>, 1913–1937, https://doi.org/10.5194/cp-15-1913-2019, 2019.</p><p>[2] Copernicus Climate Change Service (C3S), 2017.</p><p>[3] IAEA, the GNIP Database, available at: https://nucleus.iaea.org/wiser.</p><p>[4] Comas-Bru et al., Clim. Past, <strong>15</strong>, 1557–1579, https://doi.org/10.5194/cp-15-1557-2019, 2019.</p><p>[5] Werner et al., Geosci. Model Dev., <strong>9</strong>, 647–670, https://doi.org/10.5194/gmd-9-647-2016, 2016.</p><p>[6] Dee et al., Q. J. R. Meteorol. Soc., <strong>137</strong>, 553–597, https://doi.org/10.1002/qj.828, 2011.</p>


2016 ◽  
Vol 12 (9) ◽  
pp. 1907-1918 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract. Insolation changes during the Eemian (the last interglacial period, 129 000–116 000 years before present) resulted in warmer than present conditions in the Arctic region. The NEEM ice core record suggests warming of 8 ± 4 K in northwestern Greenland based on stable water isotopes. Here we use general circulation model experiments to investigate the causes of the Eemian warming in Greenland. Simulations of the atmospheric response to combinations of Eemian insolation and preindustrial oceanic conditions and vice versa are used to disentangle the impacts of the insolation change and the related changes in sea surface temperatures and sea ice conditions. The changed oceanic conditions cause warming throughout the year, prolonging the impact of the summertime insolation increase. Consequently, the oceanic conditions cause an annual mean warming of 2 K at the NEEM site, whereas the insolation alone causes an insignificant change. Taking the precipitation changes into account, however, the insolation and oceanic changes cause more comparable increases in the precipitation-weighted temperature, implying that both contributions are important for the ice core record at the NEEM site. The simulated Eemian precipitation-weighted warming of 2.4 K at the NEEM site is low compared to the ice core reconstruction, partially due to missing feedbacks related to ice sheet changes and an extensive sea ice cover. Surface mass balance calculations with an energy balance model further indicate that the combination of temperature and precipitation anomalies leads to potential mass loss in the north and southwestern parts of the ice sheet. The oceanic conditions favor increased accumulation in the southeast, while the insolation appears to be the dominant cause of the expected ice sheet reduction. Consequently, the Eemian is not a suitable analogue for future ice sheet changes.


2013 ◽  
Vol 10 (3) ◽  
pp. 1561-1582 ◽  
Author(s):  
M.-N. Woillez ◽  
M. Kageyama ◽  
N. Combourieu-Nebout ◽  
G. Krinner

Abstract. The last glacial period has been punctuated by two types of abrupt climatic events, the Dansgaard–Oeschger (DO) and Heinrich (HE) events. These events, recorded in Greenland ice and in marine sediments, involved changes in the Atlantic Meridional Overturning Circulation (AMOC) and led to major changes in the terrestrial biosphere. Here we use the dynamical global vegetation model ORCHIDEE to simulate the response of vegetation to abrupt changes in the AMOC strength. We force ORCHIDEE offline with outputs from the IPSL_CM4 general circulation model, in which the AMOC is forced to change by adding freshwater fluxes in the North Atlantic. We investigate the impact of a collapse and recovery of the AMOC, at different rates, and focus on Western Europe, where many pollen records are available for comparison. The impact of an AMOC collapse on the European mean temperatures and precipitations simulated by the GCM is relatively small but sufficient to drive an important regression of forests and expansion of grasses in ORCHIDEE, in qualitative agreement with pollen data for an HE event. On the contrary, a run with a rapid shift of the AMOC to a hyperactive state of 30 Sv, mimicking the warming phase of a DO event, does not exhibit a strong impact on the European vegetation compared to the glacial control state. For our model, simulating the impact of an HE event thus appears easier than simulating the abrupt transition towards the interstadial phase of a DO. For both a collapse or a recovery of the AMOC, the vegetation starts to respond to climatic changes immediately but reaches equilibrium about 200 yr after the climate equilibrates, suggesting a possible bias in the climatic reconstructions based on pollen records, which assume equilibrium between climate and vegetation. However, our study does not take into account vegetation feedbacks on the atmosphere.


2021 ◽  
pp. 1-46
Author(s):  
Gary M. Lackmann ◽  
Rebecca L. Miller ◽  
Walter A. Robinson ◽  
Allison C. Michaelis

AbstractPersistent anomalies (PAs) are associated with a variety of impactful weather extremes, prompting research into how their characteristics will respond to climate change. Previous studies, however, have not provided conclusive results, owing to the complexity of the phenomenon and to difficulties in general circulation model (GCM) representations of PAs. Here, we diagnose PA activity in ten years of current and projected future output from global, high-resolution (15-km mesh) time-slice simulations performed with the Model for Prediction Across Scales-Atmosphere (MPAS-A). These time slices span a range of ENSO states. They include high-resolution representations of sea-surface temperatures and GCM-based sea ice for present and future climates. Future projections, based on the RCP8.5 scenario, exhibit strong Arctic amplification and tropical upper warming, providing a valuable experiment with which to assess the impact of climate change on PA frequency. The MPAS-A present-climate simulations reproduce the main centers of observed PA activity, but with an eastward shift in the North Pacific and reduced amplitude in the North Atlantic. The overall frequency of positive PAs in the future simulations is similar to that in the present-day simulations, while negative PAs become less frequent. Although some regional changes emerge, the small, generally negative changes in PA frequency and meridional circulation index indicate that climate change does not lead to increased persistence of midlatitude flow anomalies or increased waviness in these simulations.


Sign in / Sign up

Export Citation Format

Share Document