scholarly journals Seasonal Prediction of North Pacific SSTs and PDO in the NCEP CFS Hindcasts

2012 ◽  
Vol 25 (17) ◽  
pp. 5689-5710 ◽  
Author(s):  
Caihong Wen ◽  
Yan Xue ◽  
Arun Kumar

Abstract Seasonal prediction skill of North Pacific sea surface temperature anomalies (SSTAs) and the Pacific decadal oscillation (PDO) in the NCEP Climate Forecast System (CFS) retrospective forecasts is assessed. The SST forecasts exhibit significant skills over much of the North Pacific for two seasons in advance and outperform persistence over much of the North Pacific except near the Kuroshio–Oyashia Extension. Similar to the “spring barrier” feature in the El Niño–Southern Oscillation forecasts, the central North Pacific SST experiences a faster drop in prediction skill for forecasts initialized from November to February than those from May to August. Forecasts for the PDO displayed a constant phase shift from the observation with respect to lead time. The PDO skill has a clear seasonality with highest skill for forecasts initialized in boreal spring. The impact of ENSO on the PDO and North Pacific SST prediction was investigated. The analysis revealed that seasonal prediction skill in the central North Pacific mainly results from the skillful prediction of ENSO. As a result, the PDO is more skillful than persistence at all lead times during ENSO years. On the other hand, persistence is superior to the CFS forecast during ENSO-neutral conditions owing to errors in initial conditions and deficiencies in model physics. Examination of seasonal variance and predictability (signal-to-noise ratio) further articulates the influence of ENSO on the PDO skill. The results suggest that improvement of ENSO prediction as well as reduction in model biases in the western North Pacific will lead to improvements in the PDO and North Pacific SST predictions.

2021 ◽  
Author(s):  
Yajuan Song ◽  
Xunqiang Yin

<p>Accurate prediction over the North Pacific, especially for the key parameter of sea<br>surface temperature (SST), remains a challenge for short-term climate prediction. In<br>this study, seasonal predicted skills of the First Institute of Oceanography Earth System<br>Model version 1.0 (FIO-ESM v1.0) over the North Pacific were assessed. Ensemble<br>adjustment Kalman filter (EAKF) and Projection Optimal Interpolation (Projection-OI) data<br>assimilation schemes were used to provide initial conditions for FIO-ESM v1.0 hindcasts<br>that were started from the first day of each month between 1993 and 2017. Evolution<br>and spacial distribution of SST anomalies over the North Pacific were reasonably<br>reproduced in EAKF and Projection-OI assimilation output. Two hindcast experiments<br>show that the skill of FIO-ESM v1.0 with the EAKF data assimilation scheme to predict<br>SST over the North Pacific is considerably higher than that with Projection-OI data<br>assimilation for all lead times of 1–6 months, especially in the central North Pacific where<br>the subsurface ocean temperature in the initial conditions is significantly improved by<br>EAKF data assimilation. For the Kuroshio–Oyashio extension (KOE) region, the errors<br>in the initial conditions have more rapid propagation resulting in large discrepancies<br>between simulated and observed values, which are reduced by inducing surface<br>waves into the climate model. Incorporation of realistic initial conditions and reasonable<br>physical processes into the coupled model is essential to improving seasonal prediction<br>skill. These results provide a solid basis for the development of operational seasonal<br>prediction systems for the North Pacific.</p>


2006 ◽  
Vol 134 (5) ◽  
pp. 1534-1548 ◽  
Author(s):  
Richard E. Danielson ◽  
John R. Gyakum ◽  
David N. Straub

Abstract The impact of eddy energy growth and radiation from a western North Pacific cyclone on the intensity of an eastern North Pacific cyclone a few days later is examined. Associated with the western cyclone is an upstream ridge and trough couplet, initially over Siberia on 8 March 1977. The amplitude of this couplet is perturbed in 5-day numerical simulations of the two marine cyclones. Balanced initial conditions are created by potential vorticity inversion. The magnitude of the upper-level couplet governs much of the subsequent growth of eddy energy in the western cyclone as well as the propagation of eddy energy between the two cyclones. This culminates in measurable changes in the maximum intensity of the eastern surface cyclone. The broader question of the sensitivity of this cyclone to upstream perturbations is also briefly addressed.


2009 ◽  
Vol 39 (6) ◽  
pp. 1317-1339 ◽  
Author(s):  
Robert S. Pickart ◽  
Alison M. Macdonald ◽  
G. W. K. Moore ◽  
Ian A. Renfrew ◽  
John E. Walsh ◽  
...  

Abstract The seasonal change in the development of Aleutian low pressure systems from early fall to early winter is analyzed using a combination of meteorological reanalysis fields, satellite sea surface temperature (SST) data, and satellite wind data. The time period of the study is September–December 2002, although results are shown to be representative of the long-term climatology. Characteristics of the storms were documented as they progressed across the North Pacific, including their path, central pressure, deepening rate, and speed of translation. Clear patterns emerged. Storms tended to deepen in two distinct geographical locations—the Gulf of Alaska in early fall and the western North Pacific in late fall. In the Gulf of Alaska, a quasi-permanent “notch” in the SST distribution is argued to be of significance. The signature of the notch is imprinted in the atmosphere, resulting in a region of enhanced cyclonic potential vorticity in the lower troposphere that is conducive for storm development. Later in the season, as winter approaches and the Sea of Okhotsk becomes partially ice covered and cold, the air emanating from the Asian continent leads to enhanced baroclinicity in the region south of Kamchatka. This corresponds to enhanced storm cyclogenesis in that region. Consequently, there is a seasonal westward migration of the dominant lobe of the Aleutian low. The impact of the wind stress curl pattern resulting from these two regions of storm development on the oceanic circulation is investigated using historical hydrography. It is argued that the seasonal bimodal input of cyclonic vorticity from the wind may be partly responsible for the two distinct North Pacific subarctic gyres.


2020 ◽  
Vol 33 (16) ◽  
pp. 6833-6848
Author(s):  
Tingting Han ◽  
Minghua Zhang ◽  
Botao Zhou ◽  
Xin Hao ◽  
Shangfeng Li

AbstractThe relationship between the tropical west Pacific (TWP) and East Asian summer monsoon/precipitation has been documented in previous studies. However, the stability for the signals of midsummer precipitation in the TWP sea surface temperature (SST_TWP), which is important for climate variation, has drawn little attention. This study identifies a strengthened relationship between the leading empirical orthogonal function mode (EOF1) of midsummer precipitation over Northeast China (NEC) and the SST_TWP after the mid-1990s. The EOF1 mode shows a significant positive correlation with the SST_TWP for 1996–2016, whereas the relationship is statistically insignificant for 1961–90. Further results indicate that the North Pacific multidecadal oscillation (NPMO) shifts to a positive phase after the 1990s. In the positive NPMO phase, the anomalous circulation over the northeast Pacific expands westward over the central North Pacific–Aleutian Islands region. Concurrently, the SST_TWP-associated wavelike pattern propagates northeastward from the west Pacific to the northwest Pacific and farther to the North Pacific, facilitating the poleward expansion and intensification of the SST_TWP-related circulation anomalies over the North Pacific. Therefore, the SST_TWP has an enhanced influence on NEC precipitation through the modulation of the circulation anomalies over the central North Pacific–Aleutian Islands region after the mid-1990s. Additionally, the tropical anticyclone/cyclone associated with the SST_TWP expands westward to South China, exerting an intensified impact on meridional wind anomalies along eastern China and on moisture transport over NEC. These conditions jointly contribute to the strengthened relationship between the SST_TWP and the EOF1 mode of NEC midsummer precipitation after the mid-1990s.


2018 ◽  
Vol 19 (2) ◽  
pp. 409-426 ◽  
Author(s):  
Michael J. DeFlorio ◽  
Duane E. Waliser ◽  
Bin Guan ◽  
David A. Lavers ◽  
F. Martin Ralph ◽  
...  

Abstract Atmospheric rivers (ARs) are global phenomena that transport water vapor horizontally and are associated with hydrological extremes. In this study, the Atmospheric River Skill (ATRISK) algorithm is introduced, which quantifies AR prediction skill in an object-based framework using Subseasonal to Seasonal (S2S) Project global hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF) model. The dependence of AR forecast skill is globally characterized by season, lead time, and distance between observed and forecasted ARs. Mean values of daily AR prediction skill saturate around 7–10 days, and seasonal variations are highest over the Northern Hemispheric ocean basins, where AR prediction skill increases by 15%–20% at a 7-day lead during boreal winter relative to boreal summer. AR hit and false alarm rates are explicitly considered using relative operating characteristic (ROC) curves. This analysis reveals that AR forecast utility increases at 10-day lead over the North Pacific/western U.S. region during positive El Niño–Southern Oscillation (ENSO) conditions and at 7- and 10-day leads over the North Atlantic/U.K. region during negative Arctic Oscillation (AO) conditions and decreases at a 10-day lead over the North Pacific/western U.S. region during negative Pacific–North America (PNA) teleconnection conditions. Exceptionally large increases in AR forecast utility are found over the North Pacific/western United States at a 10-day lead during El Niño + positive PNA conditions and over the North Atlantic/United Kingdom at a 7-day lead during La Niña + negative PNA conditions. These results represent the first global assessment of AR prediction skill and highlight climate variability conditions that modulate regional AR forecast skill.


2019 ◽  
Vol 32 (22) ◽  
pp. 7643-7661 ◽  
Author(s):  
Dillon J. Amaya ◽  
Yu Kosaka ◽  
Wenyu Zhou ◽  
Yu Zhang ◽  
Shang-Ping Xie ◽  
...  

Abstract Studies have indicated that North Pacific sea surface temperature (SST) variability can significantly modulate El Niño–Southern Oscillation (ENSO), but there has been little effort to put extratropical–tropical interactions into the context of historical events. To quantify the role of the North Pacific in pacing the timing and magnitude of observed ENSO, we use a fully coupled climate model to produce an ensemble of North Pacific Ocean–Global Atmosphere (nPOGA) SST pacemaker simulations. In nPOGA, SST anomalies are restored back to observations in the North Pacific (>15°N) but are free to evolve throughout the rest of the globe. We find that the North Pacific SST has significantly influenced observed ENSO variability, accounting for approximately 15% of the total variance in boreal fall and winter. The connection between the North and tropical Pacific arises from two physical pathways: 1) a wind–evaporation–SST (WES) propagating mechanism, and 2) a Gill-like atmospheric response associated with anomalous deep convection in boreal summer and fall, which we refer to as the summer deep convection (SDC) response. The SDC response accounts for 25% of the observed zonal wind variability around the equatorial date line. On an event-by-event basis, nPOGA most closely reproduces the 2014/15 and the 2015/16 El Niños. In particular, we show that the 2015 Pacific meridional mode event increased wind forcing along the equator by 20%, potentially contributing to the extreme nature of the 2015/16 El Niño. Our results illustrate the significant role of extratropical noise in pacing the initiation and magnitude of ENSO events and may improve the predictability of ENSO on seasonal time scales.


2019 ◽  
Vol 6 (3) ◽  
pp. 181463 ◽  
Author(s):  
R. Cartwright ◽  
A. Venema ◽  
V. Hernandez ◽  
C. Wyels ◽  
J. Cesere ◽  
...  

Alongside changing ocean temperatures and ocean chemistry, anthropogenic climate change is now impacting the fundamental processes that support marine systems. However, where natural climate aberrations mask or amplify the impacts of anthropogenic climate change, identifying key detrimental changes is challenging. In these situations, long-term, systematic field studies allow the consequences of anthropogenically driven climate change to be distinguished from the expected fluctuations in natural resources. In this study, we describe fluctuations in encounter rates for humpback whales, Megaptera novaeangliae , between 2008 and 2018. Encounter rates were assessed during transect surveys of the Au'Au Channel, Maui, Hawaii. Initially, rates increased, tracking projected growth rates for this population segment. Rates reached a peak in 2013, then declined through 2018. Specifically, between 2013 and 2018, mother–calf encounter rates dropped by 76.5%, suggesting a rapid reduction in the reproductive rate of the newly designated Hawaii Distinct Population Segment of humpback whales during this time. As this decline coincided with changes in the Pacific decadal oscillation, the development of the NE Pacific marine heat wave and the evolution of the 2016 El Niño, this may be another example of the impact of this potent trifecta of climatic events within the North Pacific.


2010 ◽  
Vol 23 (8) ◽  
pp. 2223-2229 ◽  
Author(s):  
Ken-Chung Ko ◽  
Huang-Hsiung Hsu

Abstract The impact of tropical perturbation on the extratropical wave activity in the North Pacific in the submonthly time scale is demonstrated here. Previous studies identified a tropical cyclone (TC)/submonthly wave pattern, which propagated north-northwestward in the Philippine Sea and recurved in the oceanic region between Japan and Taiwan. This study found that, after the arrival of the TC/submonthly wave pattern at the recurving region, the eastward-propagating wave activity in the extratropical North Pacific was significantly enhanced. It is suggested that the TC/submonthly wave pattern, which is originated in the tropical western North Pacific, enhances the eastward energy propagation of Rossby wave–like perturbation in the extratropical North Pacific and may have an impact on the long-range weather predictability in the eastern North Pacific and western North America.


2011 ◽  
Vol 24 (23) ◽  
pp. 6203-6209 ◽  
Author(s):  
Fabian Lienert ◽  
John C. Fyfe ◽  
William J. Merryfield

Abstract This study evaluates the ability of global climate models to reproduce observed tropical influences on North Pacific Ocean sea surface temperature variability. In an ensemble of climate models, the study finds that the simulated North Pacific response to El Niño–Southern Oscillation (ENSO) forcing is systematically delayed relative to the observed response because of winter and spring mixed layers in the North Pacific that are too deep and air–sea feedbacks that are too weak. Model biases in mixed layer depth and air–sea feedbacks are also associated with a model mean ENSO-related signal in the North Pacific whose amplitude is overestimated by about 30%. The study also shows that simulated North Pacific variability has more power at lower frequencies than is observed because of model errors originating in the tropics and extratropics. Implications of these results for predictions on seasonal, decadal, and longer time scales are discussed.


Sign in / Sign up

Export Citation Format

Share Document