scholarly journals Multidecadal to Centennial Variability of the AMOC: HadCM3 and a Perturbed Physics Ensemble

2013 ◽  
Vol 26 (7) ◽  
pp. 2390-2407 ◽  
Author(s):  
Laura Jackson ◽  
Michael Vellinga

Abstract Multidecadal to centennial variability of the Atlantic meridional overturning circulation (AMOC) is investigated in a multi-thousand-year simulation of the third version of the Hadley Centre Coupled Model (HadCM3) and in an ensemble of general circulation models (GCMs) based on HadCM3 with perturbed physics. Large changes in the AMOC in the standard HadCM3 are strongly related to salinity anomalies in the deep-water formation regions, with anomalies arriving via two pathways. The first is from a coupled feedback in the equatorial Atlantic Ocean, described previously by Vellinga and Wu, and the second is from variability in the Arctic Ocean, possibly driven by stochastic sea level pressure. The low-frequency variability of the AMOC in HadCM3 is well predicted from salinity anomalies from these two pathways. The sensitivity of these processes to model physics is investigated using a small ensemble based on HadCM3 where parameters relating to physical processes are varied. The AMOC responds consistently to the salinity anomalies in the ensemble members. However, 1) the timing of the response depends on the background climate state and 2) some ensemble members have significantly larger AMOC and salinity variability than in standard HadCM3 simulations. In this small ensemble, the presence and strength of multidecadal to centennial AMOC variability is associated with the variability of salinity exported from the Arctic, with little multidecadal to centennial variability of either in the coldest members. This demonstrates how the background climate state can alter the frequency and strength of AMOC variability and is a first step toward understanding how AMOC variability differs within a multimodel context.

2012 ◽  
Vol 6 (6) ◽  
pp. 1383-1394 ◽  
Author(s):  
F. Massonnet ◽  
T. Fichefet ◽  
H. Goosse ◽  
C. M. Bitz ◽  
G. Philippon-Berthier ◽  
...  

Abstract. We examine the recent (1979–2010) and future (2011–2100) characteristics of the summer Arctic sea ice cover as simulated by 29 Earth system and general circulation models from the Coupled Model Intercomparison Project, phase 5 (CMIP5). As was the case with CMIP3, a large intermodel spread persists in the simulated summer sea ice losses over the 21st century for a given forcing scenario. The 1979–2010 sea ice extent, thickness distribution and volume characteristics of each CMIP5 model are discussed as potential constraints on the September sea ice extent (SSIE) projections. Our results suggest first that the future changes in SSIE with respect to the 1979–2010 model SSIE are related in a complicated manner to the initial 1979–2010 sea ice model characteristics, due to the large diversity of the CMIP5 population: at a given time, some models are in an ice-free state while others are still on the track of ice loss. However, in phase plane plots (that do not consider the time as an independent variable), we show that the transition towards ice-free conditions is actually occurring in a very similar manner for all models. We also find that the year at which SSIE drops below a certain threshold is likely to be constrained by the present-day sea ice properties. In a second step, using several adequate 1979–2010 sea ice metrics, we effectively reduce the uncertainty as to when the Arctic could become nearly ice-free in summertime, the interval [2041, 2060] being our best estimate for a high climate forcing scenario.


2012 ◽  
Vol 6 (4) ◽  
pp. 2931-2959 ◽  
Author(s):  
F. Massonnet ◽  
T. Fichefet ◽  
H. Goosse ◽  
C. M. Bitz ◽  
G. Philippon-Berthier ◽  
...  

Abstract. We examine the recent (1979–2010) and future (2011–2100) characteristics of the summer Arctic sea ice cover as simulated by 29 Earth system and general circulation models from the Coupled Model Intercomparison Project, phase 5 (CMIP5). As was the case with CMIP3, a large inter-model spread persists in the simulated summer sea ice losses over the 21st century for a given forcing scenario. The initial 1979–2010 sea ice properties (including the sea ice extent, thickness distribution and volume characteristics) of each CMIP5 model are discussed as potential constraints on the September sea ice extent (SSIE) projections. Our results suggest first that the SSIE anomalies (compared to the 1979–2010 model SSIE) are related in a complicated manner to the initial 1979–2010 sea ice model characteristics, due to the large diversity of the CMIP5 population (at a given time, some models are in an ice-free state while others are still on the track of ice loss). In a new diagram (that does not consider the time as an independent variable) we show that the transition towards ice-free conditions is actually occuring in a very similar manner for all models. For these reasons, some quantities that do not explicitly depend on time, such as the year at which SSIE drops below a certain threshold, are likely to be constrained. In a second step, using several adequate 1979–2010 sea ice metrics, we effectively reduce the uncertainty as to when the Arctic could become nearly ice-free in summertime (between 2041 and 2060 for a high climate forcing scenario).


2020 ◽  
Author(s):  
Prodromos Zanis ◽  
Dimitris Akritidis ◽  
Aristeidis K. Georgoulias ◽  
Robert J. Allen ◽  
Susanne E. Bauer ◽  
...  

Abstract. In this work, we use Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations from 10 Earth System Models (ESMs) and General Circulation Models (GCMs) to study the fast climate responses on pre-industrial climate, due to present-day aerosols. All models carried out two sets of simulations; a control experiment with all forcings set to the year 1850 and a perturbation experiment with all forcings identical to the control, except for aerosols with precursor emissions set to the year 2014. In response to the pattern of all aerosols effective radiative forcing (ERF), the fast temperature responses are characterised by cooling over the continental areas, especially in the Northern Hemisphere, with the largest cooling over East Asia and India, sulfate being the dominant aerosol surface temperature driver for present-day emissions. In the Arctic there is a warming signal for winter in the ensemble mean of fast temperature responses, but the model-to-model variability is large, and it is presumably linked to aerosol induced circulation changes. The largest fast precipitation responses are seen in the tropical belt regions, generally characterized by a reduction over continental regions and a southward shift of the tropical rain belt. This is a characteristic and robust feature among most models in this study, associated with a southward shift of the Intertropical convergence zone (ITCZ) and a weakening of the monsoon systems around the globe (Asia, Africa and America) in response to hemispherically asymmetric cooling from a Northern Hemisphere aerosol perturbation, leading the ITCZ and tropical precipitation to shift away from the cooled hemispheric pattern. An interesting feature in aerosol induced circulation changes is a characteristic dipole pattern with intensification of the Icelandic Low and an anticyclonic anomaly over Southeastern Europe, inducing warm air advection towards the northern polar latitudes in winter.


2021 ◽  
Author(s):  
Tyler Janoski ◽  
Michael Previdi ◽  
Gabriel Chiodo ◽  
Karen Smith ◽  
Lorenzo Polvani

<p>Arctic amplification (AA), or enhanced surface warming of the Arctic, is ubiquitous in observations, and in model simulations subjected to increased greenhouse gas (GHG) forcing. Despite its importance, the mechanisms driving AA are not entirely understood. Here, we show that in CMIP5 (Coupled Model Intercomparison Project 5) general circulation models (GCMs), AA develops within a few months following an instantaneous quadrupling of atmospheric CO<sub>2</sub>. We find that this rapid AA response can be attributed to the lapse rate feedback, which acts to disproportionately warm the Arctic, even before any significant changes in Arctic sea ice occur. Only on longer timescales (beyond the first few months) does the decrease in sea ice become an important contributor to AA via the albedo feedback and increased ocean-to-atmosphere heat flux. An important limitation of our CMIP5 analysis is that internal climate variability is large on the short time scales considered. To overcome this limitation – and thus better isolate the GHG-forced response – we produced a large ensemble (100 members) of instantaneous CO<sub>2</sub>-quadrupling simulations using a single GCM, the NCAR Community Earth System Model (CESM1). In our new CESM1 ensemble we find the same rapid AA response seen in the CMIP5 models, confirming that AA ultimately owes its existence to fast atmospheric processes.</p>


2017 ◽  
Vol 30 (11) ◽  
pp. 4113-4130 ◽  
Author(s):  
Mohammad Reza Najafi ◽  
Francis Zwiers ◽  
Nathan Gillett

Abstract A detection and attribution analysis on the multidecadal trend in snow water equivalent (SWE) has been conducted in four river basins located in British Columbia (BC). Monthly output from a suite of 10 general circulation models (GCMs) that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5) is used, including 40 climate simulations with anthropogenic and natural forcing combined (ALL), 40 simulations with natural forcing alone (NAT), and approximately 4200 yr of preindustrial control simulations (CTL). This output was downscaled to ° spatial resolution and daily temporal resolution to drive the Variable Infiltration Capacity hydrologic model (VIC). Observed (manual snow survey) and VIC-reconstructed SWE, which exhibit declines across BC, are projected onto the multimodel ensemble means of the VIC-simulated SWE based on the responses to different forcings using an optimal fingerprinting approach. Results of the detection and attribution analysis shows that these declines are attributable to the anthropogenic forcing, which is dominated by the effect of increases in greenhouse gas concentration, and that they are not caused by natural forcing due to volcanic activity and solar variability combined. Anthropogenic influence is detected in three of the four basins (Fraser, Columbia, and Campbell Rivers) based on the VIC-reconstructed SWE, and in all basins based on the manual snow survey records. The simulations underestimate the observed snowpack trends in the Columbia River basin, which has the highest mean elevation. Attribution is supported by the detection of human influence on the cold-season temperatures that drive the snowpack reductions. These results are robust to the use of different observed datasets and to the treatment of low-frequency variability effects.


2020 ◽  
Vol 20 (14) ◽  
pp. 8381-8404 ◽  
Author(s):  
Prodromos Zanis ◽  
Dimitris Akritidis ◽  
Aristeidis K. Georgoulias ◽  
Robert J. Allen ◽  
Susanne E. Bauer ◽  
...  

Abstract. In this work, we use Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations from 10 Earth system models (ESMs) and general circulation models (GCMs) to study the fast climate responses on pre-industrial climate, due to present-day aerosols. All models carried out two sets of simulations: a control experiment with all forcings set to the year 1850 and a perturbation experiment with all forcings identical to the control, except for aerosols with precursor emissions set to the year 2014. In response to the pattern of all aerosols effective radiative forcing (ERF), the fast temperature responses are characterized by cooling over the continental areas, especially in the Northern Hemisphere, with the largest cooling over East Asia and India, sulfate being the dominant aerosol surface temperature driver for present-day emissions. In the Arctic there is a warming signal for winter in the ensemble mean of fast temperature responses, but the model-to-model variability is large, and it is presumably linked to aerosol-induced circulation changes. The largest fast precipitation responses are seen in the tropical belt regions, generally characterized by a reduction over continental regions and presumably a southward shift of the tropical rain belt. This is a characteristic and robust feature among most models in this study, associated with weakening of the monsoon systems around the globe (Asia, Africa and America) in response to hemispherically asymmetric cooling from a Northern Hemisphere aerosol perturbation, forcing possibly the Intertropical Convergence Zone (ITCZ) and tropical precipitation to shift away from the cooled hemisphere despite that aerosols' effects on temperature and precipitation are only partly realized in these simulations as the sea surface temperatures are kept fixed. An interesting feature in aerosol-induced circulation changes is a characteristic dipole pattern with intensification of the Icelandic Low and an anticyclonic anomaly over southeastern Europe, inducing warm air advection towards the northern polar latitudes in winter.


2021 ◽  
Author(s):  
Amelie Simon ◽  
Brady Ferster ◽  
Alexey Fedorov ◽  
Juliette Mignot ◽  
Eric Guilyardi

<p>Since the mid-20th century, the Arctic has experienced two major impacts of climate change: a warming at a faster rate than the global mean surface temperature and a reduction of both winter and summer sea ice cover. However, the impact of the Arctic sea ice loss on global climate remains under debate, in particular the impact on the Atlantic meridional overturning circulation (AMOC). Specifically, some studies find that in response to Arctic sea ice decline, the AMOC weakens on multi-decadal timescales, reaching a new equilibrium state with a significantly reduced AMOC, while others studies see a weak AMOC reduction followed by a partial or full recovery. To further investigate the impact of sea ice loss on the climate, ensemble simulations are performed with the coupled atmosphere-ocean general circulation model CM5A2 from the Insitut Pierre Simon Laplace (IPSL-CM5A2). To induce the change in sea ice, the Arctic sea ice albedo is reduced by about 23%, previously shown to be consistent with the sea ice changes expected to occur by approximately the year 2040. The experimental design compares the response to sea ice loss starting from AMOC minimum and neutral phases, respectively. The objective of our experiment is to further investigate the AMOC-sea ice relationship in the transient and equilibrium responses to decreased sea ice and the robustness within a coupled model. The initial 30-year response results in similar spatial patterns in sea ice volume and 500mb potential height responses (inducing a negative NAO-like pattern) for both types of initial conditions. In both cases, the AMOC reduces by 0.5 to 1.5Sv Sv (about 15% of the model mean AMOC) during the first ~100 years of the experiment. Yet, there are differences in the response depending on the AMOC initial state, for example, in the magnitude and timing of the AMOC reduction. The AMOC eventually recover towards years 151-200. Our results give insight into the importance of decadal variability for anticipating the response of the next decades to climate change, as well as improves the understanding of the long-term transient and equilibrium responses between AMOC and Arctic sea ice.</p>


Author(s):  
D.J Frame ◽  
T Aina ◽  
C.M Christensen ◽  
N.E Faull ◽  
S.H.E Knight ◽  
...  

Perturbed physics experiments are among the most comprehensive ways to address uncertainty in climate change forecasts. In these experiments, parameters and parametrizations in atmosphere–ocean general circulation models are perturbed across ranges of uncertainty, and results are compared with observations. In this paper, we describe the largest perturbed physics climate experiment conducted to date, the British Broadcasting Corporation (BBC) climate change experiment, in which the physics of the atmosphere and ocean are changed, and run in conjunction with a forcing ensemble designed to represent uncertainty in past and future forcings, under the A1B Special Report on Emissions Scenarios (SRES) climate change scenario.


2021 ◽  
Author(s):  
Xinping Xu ◽  
Shengping He ◽  
Yongqi Gao ◽  
Botao Zhou ◽  
Huijun Wang

AbstractPrevious modelling and observational studies have shown discrepancies in the interannual relationship of winter surface air temperature (SAT) between Arctic and East Asia, stimulating the debate about whether Arctic change can influence midlatitude climate. This study uses two sets of coordinated experiments (EXP1 and EXP2) from six different atmospheric general circulation models. Both EXP1 and EXP2 consist of 130 ensemble members, each of which in EXP1 (EXP2) was forced by the same observed daily varying sea ice and daily varying (daily climatological) sea surface temperature (SST) for 1982–2014 but with different atmospheric initial conditions. Large spread exists among ensemble members in simulating the Arctic–East Asian SAT relationship. Only a fraction of ensemble members can reproduce the observed deep Arctic warming–cold continent pattern which extends from surface to upper troposphere, implying the important role of atmospheric internal variability. The mechanisms of deep Arctic warming and shallow Arctic warming are further distinguished. Arctic warming aloft is caused primarily by poleward moisture transport, which in conjunction with the surface warming coupled with sea ice melting constitutes the surface-amplified deep Arctic warming throughout the troposphere. These processes associated with the deep Arctic warming may be related to the forcing of remote SST when there is favorable atmospheric circulation such as Rossby wave train propagating from the North Atlantic into the Arctic.


1995 ◽  
Vol 43 (2) ◽  
pp. 147-158 ◽  
Author(s):  
Anatoly V. Lozhkin ◽  
Patricia M. Anderson

AbstractAlluvial, fluvial, and organic deposits of the last interglaciation are exposed along numerous river terraces in northeast Siberia. Although chronological control is often poor, the paleobotanical data suggest range extensions of up to 1000 km for the primary tree species. These data also indicate that boreal communities of the last interglaciation were similar to modern ones in composition, but their distributions were displaced significantly to the north-northwest. Inferences about climate of this period suggest that mean July temperatures were warmer by 4 to 8°C, and seasonal precipitation was slightly greater. Mean January temperatures may have been severely cooler than today (up to 12°C) along the Arctic coast, but similar or slightly warmer than present in other areas. The direction and magnitude of change in July temperatures agree with Atmospheric General Circulation Models, but the 126,000-year-B.P. model results also suggest trends opposite to the paleobotanical data, with simulated cooler winter temperatures and drier conditions than present during the climatic optimum.


Sign in / Sign up

Export Citation Format

Share Document