scholarly journals The Surface Downwelling Solar Radiation Surplus over the Southern Ocean in the Met Office Model: The Role of Midlatitude Cyclone Clouds

2012 ◽  
Vol 25 (21) ◽  
pp. 7467-7486 ◽  
Author(s):  
A. Bodas-Salcedo ◽  
K. D. Williams ◽  
P. R. Field ◽  
A. P. Lock

The authors study the role of clouds in the persistent bias of surface downwelling shortwave radiation (SDSR) in the Southern Ocean in the atmosphere-only version of the Met Office model. The reduction of this bias in the atmosphere-only version is important to minimize sea surface temperature biases when the atmosphere model is coupled to a dynamic ocean. The authors use cloud properties and radiative fluxes estimates from the International Satellite Cloud Climatology Project (ISCCP) and apply a clustering technique to classify clouds into different regimes over the Southern Ocean. Then, they composite the cloud regimes around cyclone centers, which allows them to study the role of each cloud regime in a mean composite cyclone. Low- and midlevel clouds in the cold-air sector of the cyclones are responsible for most of the bias. Based on this analysis, the authors develop and test a new diagnosis of shear-dominated boundary layers. This change improves the simulation of the SDSR through a better simulation of the frequency of occurrence of the cloud regimes in the cyclone composite. Substantial biases in the radiative properties of the midtop and stratocumulus regimes are still present, which suggests the need to increase the optical depth of the low-level cloud with moderate optical depth and cloud with tops at midlevels.

2014 ◽  
Vol 27 (1) ◽  
pp. 41-56 ◽  
Author(s):  
A. Bodas-Salcedo ◽  
K. D. Williams ◽  
M. A. Ringer ◽  
I. Beau ◽  
J. N. S. Cole ◽  
...  

Abstract Current climate models generally reflect too little solar radiation over the Southern Ocean, which may be the leading cause of the prevalent sea surface temperature biases in climate models. The authors study the role of clouds on the radiation biases in atmosphere-only simulations of the Cloud Feedback Model Intercomparison Project phase 2 (CFMIP2), as clouds have a leading role in controlling the solar radiation absorbed at those latitudes. The authors composite daily data around cyclone centers in the latitude band between 40° and 70°S during the summer. They use cloud property estimates from satellite to classify clouds into different regimes, which allow them to relate the cloud regimes and their associated radiative biases to the meteorological conditions in which they occur. The cloud regimes are defined using cloud properties retrieved using passive sensors and may suffer from the errors associated with this type of retrievals. The authors use information from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar to investigate in more detail the properties of the “midlevel” cloud regime. Most of the model biases occur in the cold-air side of the cyclone composite, and the cyclone composite accounts for most of the climatological error in that latitudinal band. The midlevel regime is the main contributor to reflected shortwave radiation biases. CALIPSO data show that the midlevel cloud regime is dominated by two main cloud types: cloud with tops actually at midlevel and low-level cloud. Improving the simulation of these cloud types should help reduce the biases in the simulation of the solar radiation budget in the Southern Ocean in climate models.


2014 ◽  
Vol 14 (3) ◽  
pp. 1141-1158 ◽  
Author(s):  
E. Gryspeerdt ◽  
P. Stier ◽  
D. G. Partridge

Abstract. Many different interactions between aerosols and clouds have been postulated, based on correlations between satellite retrieved aerosol and cloud properties. Previous studies highlighted the importance of meteorological covariations to the observed correlations. In this work, we make use of multiple temporally-spaced satellite retrievals to observe the development of cloud regimes. The observation of cloud regime development allows us to account for the influences of cloud fraction (CF) and meteorological factors on the aerosol retrieval. By accounting for the aerosol index (AI)-CF relationship, we reduce the influence of meteorological correlations compared to "snapshot" studies, finding that simple correlations overestimate any aerosol effect on CF by at least a factor of two. We find an increased occurrence of transitions into the stratocumulus regime over ocean with increases in MODIS AI, consistent with the hypothesis that aerosols increase stratocumulus persistence. We also observe an increase in transitions into the deep convective regime over land, consistent with the aerosol invigoration hypothesis. We find changes in the transitions from the shallow cumulus regime in different aerosol environments. The strength of these changes is strongly dependent on Low Troposphere Static Stability and 10 m windspeed, but less so on other meteorological factors. Whilst we have reduced the error due to meteorological and CF effects on the aerosol retrieval, meteorological covariation with the cloud and aerosol properties is harder to remove, so these results likely represent an upper bound on the effect of aerosols on cloud development and CF.


2013 ◽  
Vol 13 (8) ◽  
pp. 22931-22977 ◽  
Author(s):  
E. Gryspeerdt ◽  
P. Stier ◽  
D. G. Partridge

Abstract. Many different interactions between aerosols and clouds have been postulated based on correlations between satellite retrieved aerosol and cloud properties. Previous studies highlighted the importance of meteorological covariability to the observed correlations. In this work, we make use of multiple temporally-spaced satellite retrievals to observe the development of cloud regimes. The observation of cloud regime development allows us to account for the influences of cloud fraction (CF) and meteorological factors on the aerosol retrieval. By accounting for the aerosol index (AI)-CF relationship we reduce the influence of meteorological correlations compared to "snapshot" studies, finding that simple correlations overestimate any aerosol effect on CF by at least three times. We find an increased occurrence of transitions into the stratocumulus regime over ocean with increases in MODIS Aerosol Index (AI), consistent with the hypothesis that aerosols increase the stratocumulus persistence. We also observe an increase in transitions into the deep convective regime over land, consistent with the aerosol invigoration hypothesis. We find changes in the transitions from the shallow cumulus in different aerosol environments. The strength of these changes is strongly dependent on Low Troposphere Static Stability and 10 m windspeed, but less so on other meteorological factors. Whilst we have reduced the error due to meteorological and CF effects on the aerosol retrieval, meteorological covariation with the cloud and aerosol properties is harder to remove, so these results likely represent an upper bound on the effect of aerosols on cloud development and CF.


2014 ◽  
Vol 27 (16) ◽  
pp. 6189-6203 ◽  
Author(s):  
Shannon Mason ◽  
Christian Jakob ◽  
Alain Protat ◽  
Julien Delanoë

Abstract Clouds strongly affect the absorption and reflection of shortwave and longwave radiation in the atmosphere. A key bias in climate models is related to excess absorbed shortwave radiation in the high-latitude Southern Ocean. Model evaluation studies attribute these biases in part to midtopped clouds, and observations confirm significant midtopped clouds in the zone of interest. However, it is not yet clear what cloud properties can be attributed to the deficit in modeled clouds. Present approaches using observed cloud regimes do not sufficiently differentiate between potentially distinct types of midtopped clouds and their meteorological contexts. This study presents a refined set of midtopped cloud subregimes for the high-latitude Southern Ocean, which are distinct in their dynamical and thermodynamic background states. Active satellite observations from CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) are used to study the macrophysical structure and microphysical properties of the new cloud regimes. The subgrid-scale variability of cloud structure and microphysics is quantified within the cloud regimes by identifying representative physical cloud profiles at high resolution from the radar–lidar (DARDAR) cloud classification mask. The midtopped cloud subregimes distinguish between stratiform clouds under a high inversion and moderate subsidence; an optically thin cold-air advection cloud regime occurring under weak subsidence and including altostratus over low clouds; optically thick clouds with frequent deep structures under weak ascent and warm midlevel anomalies; and a midlevel convective cloud regime associated with strong ascent and warm advection. The new midtopped cloud regimes for the high-latitude Southern Ocean will provide a refined tool for model evaluation and the attribution of shortwave radiation biases to distinct cloud processes and properties.


2014 ◽  
Vol 27 (23) ◽  
pp. 8836-8857 ◽  
Author(s):  
Daniel T. McCoy ◽  
Dennis L. Hartmann ◽  
Daniel P. Grosvenor

Abstract The sensitivity of the reflection of shortwave radiation over the Southern Ocean to the cloud properties there is estimated using observations from a suite of passive and active satellite instruments in combination with radiative transfer modeling. A composite cloud property observational data description is constructed that consistently incorporates mean cloud liquid water content, ice water content, liquid and ice particle radius information, vertical structure, vertical overlap, and spatial aggregation of cloud water as measured by optical depth versus cloud-top pressure histograms. The observational datasets used are Moderate Resolution Imaging Spectroradiometer (MODIS) effective radius filtered to mitigate solar zenith angle bias, the Multiangle Imaging Spectroradiometer (MISR) cloud-top height–optical depth (CTH–OD) histogram, the liquid water path from the University of Wisconsin dataset, and ice cloud properties from CloudSat. This cloud database is used to compute reflected shortwave radiation as a function of month and location over the ocean from 40° to 60°S, which compares well with observations of reflected shortwave radiation. This calculation is then used to test the sensitivity of the seasonal variation of shortwave reflection to the observed seasonal variation of cloud properties. Effective radius decreases during the summer season, which results in an increase in reflected solar radiation of 4–8 W m−2 during summer compared to what would be reflected if the effective radius remained constant at its annual-mean value. Summertime increases in low cloud fraction similarly increase the summertime reflection of solar radiation by 9–11 W m−2. In-cloud liquid water path is less in summertime, causing the reflected solar radiation to be 1–4 W m−2 less.


2014 ◽  
Vol 27 (23) ◽  
pp. 8858-8868 ◽  
Author(s):  
Daniel T. McCoy ◽  
Dennis L. Hartmann ◽  
Daniel P. Grosvenor

Abstract Climate models produce an increase in cloud optical depth in midlatitudes associated with climate warming, but the magnitude of this increase and its impact on reflected solar radiation vary from model to model. Transition from ice to liquid in midlatitude clouds is thought to be one mechanism for producing increased cloud optical depth. Here observations of cloud properties are used from a suite of remote sensing instruments to estimate the effect of conversion of ice to liquid associated with warming on reflected solar radiation in the latitude band from 40° to 60°S. The calculated increase in upwelling shortwave radiation (SW↑) is found to be important and of comparable magnitude to the increase in SW↑ associated with warming-induced increases of optical depth in climate models. The region where the authors' estimate increases SW↑ extends farther equatorward than the region where optical depth increases with warming in models. This difference is likely caused by other mechanisms at work in the models but is also sensitive to the amount of ice present in climate models and its susceptibility to warming.


2012 ◽  
Vol 25 (21) ◽  
pp. 7313-7327 ◽  
Author(s):  
Derek J. Posselt ◽  
Andrew R. Jongeward ◽  
Chuan-Yuan Hsu ◽  
Gerald L. Potter

The Modern-Era Retrospective Analysis for Research and Application (MERRA) is a reanalysis designed to produce an improved representation of the Earth’s hydrologic cycle. This study examines the representation of deep convective clouds in MERRA, comparing analyzed liquid and ice clouds with deep convective cloud objects observed by instruments on the Tropical Rainfall Measuring Mission satellite. Results show that MERRA contains deep convective cloud in 98.1% of the observed cases. MERRA-derived probability density functions (PDFs) of cloud properties have a similar form as the observed PDFs and exhibit a similar trend with changes in object size. Total water path, optical depth, and outgoing shortwave radiation (OSR) in MERRA are found to match the cloud object observations quite well; however, there appears to be a bias toward higher-than-observed cloud tops in the MERRA. The reanalysis fits the observations most closely for the largest class of convective systems, with performance generally decreasing with a transition to smaller convective systems. Comparisons of simulated total water path, optical depth, and OSR are found to be highly sensitive to the assumed subgrid distribution of condensate and indicate the need for caution when interpreting model-data comparisons that require disaggregation of grid-scale cloud to satellite pixel scales.


2001 ◽  
Vol 33 ◽  
pp. 248-252 ◽  
Author(s):  
Xuanji Wang ◽  
Jeffrey R. Key

AbstractThe spatial and temporal variability of surface, cloud and radiative properties of sea ice are examined using new satellite-derived products. Downwelling short- and longwave fluxes exhibit temporal correlation over about 180 days, but cloud optical depth and cloud fraction show almost no correlation over time. The spatial variance of surface properties is shown to increase much less rapidly than that of cloud properties. The effect of small-scale inhomogeneity in surface and cloud properties on the calculation of radiative fluxes at ice- and climate-model gridscales is also investigated. Annual mean differences between gridcell fluxes computed from average surface and cloud properties and averages of pixel-by-pixel fluxes are 9.46% for the downwelling shortwave flux and −7.04% for the longwave flux. Therefore, using mean surface and cloud properties to compute surface radiative fluxes in a gridcell results in an overestimate of the shortwave flux and an underestimate of the longwave flux. Model sensitivity studies show that such biases may result in substantial errors in modeled ice thickness. Clearly, the sub-gridscale inhomogeneity of surface and atmospheric properties must be considered when estimating aggregate-area fluxes in sea-ice and climate models.


2018 ◽  
Author(s):  
Maria José Granados-Muñoz ◽  
Michael Sicard ◽  
Roberto Román ◽  
Jose Antonio Benavent-Oltra ◽  
Rubén Barragán ◽  
...  

Abstract. Aerosol radiative properties are investigated in South-eastern Spain during a dust event on June 16–17, 2013 in the framework of the ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) campaign. Particle optical and microphysical properties from ground-based sun/sky photometer and lidar measurements, as well as in situ measurements onboard the SAFIRE ATR 42 French research aircraft are used to create a set of different levels of input parameterizations which feed the 1-D radiative transfer model (RTM) GAME (Global Atmospheric ModEl). We consider three datasets: 1) a first parametrization based on the retrievals by an advanced aerosol inversion code (GRASP; Generalized Retrieval of Aerosol and Surface Properties) applied to combined photometer and lidar data; 2) a parameterization based on the photometer columnar optical properties and vertically-resolved lidar retrievals with the two-component Klett-Fernald algorithm; and 3) a parametrization based on vertically-resolved optical and microphysical aerosol properties measured in situ by the aircraft instrumentation. Once retrieved, the outputs of the RTM in terms of both shortwave and longwave radiative fluxes are contrasted against ground-, satellite- and in situ airborne measurements. In addition, the outputs of the model in terms of the aerosol direct radiative effect are discussed with respect to the different input parameterizations. Results show that calculated atmospheric radiative fluxes differ no more than 7 % to the measured ones. The three parametrization datasets produce aerosol radiative effects with differences up to 10 W m−2 in the shortwave spectral range (mostly due to differences in the aerosol optical depth), and 2 W m−2 for the longwave (mainly due to differences in the aerosol optical depth but also to the coarse mode radius used to calculate the radiative properties). The study reveals the complexity of parameterizing 1-D RTMs as sizing and characterising the optical properties of mineral dust is challenging. The use of advanced remote sensing data and processing, in combination with closure studies on the optical/microphysical properties from in situ aircraft measurements when available, is recommended.


2015 ◽  
Vol 61 (229) ◽  
pp. 889-907 ◽  
Author(s):  
Jakob F. Steiner ◽  
Francesca Pellicciotti ◽  
Pascal Buri ◽  
Evan S. Miles ◽  
Walter W. Immerzeel ◽  
...  

AbstractIce cliffs have been identified as a reason for higher ablation rates on debris-covered glaciers than are implied by the insulation effects of the debris. This study aims to improve our understanding of cliff backwasting, and the role of radiative fluxes in particular. An energy-balance model is forced with new data gathered in May and October 2013 on Lirung Glacier, Nepalese Himalaya. Observations show substantial variability in melt between cliffs, between locations on any cliff and between seasons. Using a high-resolution digital elevation model we calculate longwave fluxes incident to the cliff from surrounding terrain and include the effect of local shading on shortwave radiation. This is an advance over previous studies, that made simplified assumptions on cliff geometry and radiative fluxes. Measured melt rates varied between 3.25 and 8.6 cm d−1 in May and 0.18 and 1.34 cm d−1 in October. Model results reproduce the strong variability in space and time, suggesting considerable differences in radiative fluxes over one cliff. In October the model fails to reproduce stake readings, probably due to the lack of a refreezing component. Disregarding local topography can lead to overestimation of melt at the point scale by up to ∼9%.


Sign in / Sign up

Export Citation Format

Share Document