scholarly journals The Role of Oceans and Sea Ice in Abrupt Transitions between Multiple Climate States

2013 ◽  
Vol 26 (9) ◽  
pp. 2862-2879 ◽  
Author(s):  
Brian E. J. Rose ◽  
David Ferreira ◽  
John Marshall

Abstract The coupled climate dynamics underlying large, rapid, and potentially irreversible changes in ice cover are studied. A global atmosphere–ocean–sea ice general circulation model with idealized aquaplanet geometry is forced by gradual multi-millennial variations in solar luminosity. The model traverses a hysteresis loop between warm ice-free conditions and cold glacial conditions in response to ±5 W m−2 variations in global, annual-mean insolation. Comparison of several model configurations confirms the importance of polar ocean processes in setting the sensitivity and time scales of the transitions. A “sawtooth” character is found with faster warming and slower cooling, reflecting the opposing effects of surface heating and cooling on upper-ocean buoyancy and, thus, effective heat capacity. The transition from a glacial to warm, equable climate occurs in about 200 years. In contrast to the “freshwater hosing” scenario, transitions are driven by radiative forcing and sea ice feedbacks. The ocean circulation, and notably the meridional overturning circulation (MOC), does not drive the climate change. The MOC (and associated heat transport) collapses poleward of the advancing ice edge, but this is a purely passive response to cooling and ice expansion. The MOC does, however, play a key role in setting the time scales of the transition and contributes to the asymmetry between warming and cooling.

2005 ◽  
Vol 35 (5) ◽  
pp. 601-615 ◽  
Author(s):  
M. A. Lucas ◽  
J. J. Hirschi ◽  
J. D. Stark ◽  
J. Marotzke

Abstract The response of an idealized ocean basin to variable buoyancy forcing is examined. A general circulation model that employs a Gent–McWilliams mixing parameterization is forced by a zonally constant restoring surface temperature profile, which varies with latitude and time over a period P. In each experiment, 17 different values of P are studied, ranging from 6 months to 32 000 yr. The model's meridional overturning circulation (MOC) exhibits a very strong response on all time scales greater than 15 yr, up to and including the longest forcing time scales examined. The peak-to-peak values of the MOC oscillations reach up to 125% of the steady-state maximum MOC and exhibit resonance-like behavior, with a maximum at centennial to millennial forcing periods (depending on the vertical diffusivity). This resonance-like behavior stems from the existence of two adjustment time scales, one of which is set by the vertical diffusion and the other of which is set by the basin width. Furthermore, the linearity of the response as well as its lag with the forcing varies with the forcing period. The considerable deviation from the quasi-equilibrium response at all time scales above 15 yr is surprising and suggests a potentially important role of the ocean circulation for climate, even at Milankovich time scales.


2009 ◽  
Vol 39 (2) ◽  
pp. 351-368 ◽  
Author(s):  
Carl Wunsch ◽  
Patrick Heimbach

Abstract The zonally integrated meridional and vertical velocities as well as the enthalpy transports and fluxes in a least squares adjusted general circulation model are used to estimate the top-to-bottom oceanic meridional overturning circulation (MOC) and its variability from 1992 to 2006. A variety of simple theories all produce time scales suggesting that the mid- and high-latitude oceans should respond to atmospheric driving only over several decades. In practice, little change is seen in the MOC and associated heat transport except very close to the sea surface, at depth near the equator, and in parts of the Southern Ocean. Variability in meridional transports in both volume and enthalpy is dominated by the annual cycle and secondarily by the semiannual cycle, particularly in the Southern Ocean. On time scales longer than a year, the solution exhibits small trends with complicated global spatial patterns. Apart from a net uptake of heat from the atmosphere (forced by the NCEP–NCAR reanalysis, which produces net ocean heating), the origins of the meridional transport trends are not distinguishable and are likely a combination of model disequilibrium, shifts in the observing system, other trends (real or artificial) in the meteorological fields, and/or true oceanic secularities. None of the results, however, supports an inference of oceanic circulation shifts taking the system out of the range in which changes are more than small perturbations. That the oceanic observations do not conflict with an apparent excess heat uptake from the atmosphere implies a continued undersampling of the global ocean, even in the upper layers.


2014 ◽  
Vol 44 (1) ◽  
pp. 24-43 ◽  
Author(s):  
Yosef Ashkenazy ◽  
Hezi Gildor ◽  
Martin Losch ◽  
Eli Tziperman

Abstract Between ~750 and 635 million years ago, during the Neoproterozoic era, the earth experienced at least two significant, possibly global, glaciations, termed “Snowball Earth.” While many studies have focused on the dynamics and the role of the atmosphere and ice flow over the ocean in these events, only a few have investigated the related associated ocean circulation, and no study has examined the ocean circulation under a thick (~1 km deep) sea ice cover, driven by geothermal heat flux. Here, a thick sea ice–flow model coupled to an ocean general circulation model is used to study the ocean circulation under Snowball Earth conditions. The ocean circulation is first investigated under a simplified zonal symmetry assumption, and (i) strong equatorial zonal jets and (ii) a strong meridional overturning cell are found, limited to an area very close to the equator. The authors derive an analytic approximation for the latitude–depth ocean dynamics and find that the extent of the meridional overturning circulation cell only depends on the horizontal eddy viscosity and β (the change of the Coriolis parameter with latitude). The analytic approximation closely reproduces the numerical results. Three-dimensional ocean simulations, with reconstructed Neoproterozoic continental configuration, confirm the zonally symmetric dynamics and show additional boundary currents and strong upwelling and downwelling near the continents.


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2021 ◽  
Author(s):  
Rishav Goyal ◽  
Martin Jucker ◽  
Alex Sen Gupta ◽  
Harry Hendon ◽  
Matthew England

Abstract A distinctive feature of the Southern Hemisphere (SH) extratropical atmospheric circulation is the quasi-stationary zonal wave 3 (ZW3) pattern, characterized by three high and three low-pressure centers around the SH extratropics. This feature is present in both the mean atmospheric circulation and its variability on daily, seasonal and interannual timescales. While the ZW3 pattern has significant impacts on meridional heat transport and Antarctic sea ice extent, the reason for its existence remains uncertain, although it has long been assumed to be linked to the existence of three major land masses in the SH extratropics. Here we use an atmospheric general circulation model to show that the stationery ZW3 pattern is instead driven by zonal asymmetric deep atmospheric convection in the tropics, with little to no role played by the orography or land masses in the extratropics. Localized regions of deep convection in the tropics form a local Hadley cell which in turn creates a wave source in the subtropics that excites a poleward and eastward propagating wave train which forms stationary waves in the SH high latitudes. Our findings suggest that changes in tropical deep convection, either due to natural variability or climate change, will impact the zonal wave 3 pattern, with implications for Southern Hemisphere climate, ocean circulation, and sea-ice.


2007 ◽  
Vol 24 (8) ◽  
pp. 1464-1478 ◽  
Author(s):  
Detlef Stammer ◽  
Armin Köhl ◽  
Carl Wunsch

Abstract The impact of new geoid height models on estimates of the ocean circulation, now available from the Gravity Recovery and Climate Experiment (GRACE) spacecraft, is assessed, and the implications of far more accurate geoids, anticipated from the European Space Agency’s (ESA) Gravity and Ocean Circulation Explorer (GOCE) mission, are explored. The study is based on several circulation estimates obtained over the period 1992–2002 by combining most of the available ocean datasets with a global general circulation model on a 1° horizontal grid and by exchanging only the EGM96 geoid model with two different geoid models available from GRACE. As compared to the EGM96-based solution, the GRACE geoid leads to an estimate of the ocean circulation that is more consistent with the Levitus temperature and salinity climatology. While not a formal proof, this finding supports the inference of a substantially improved GRACE geoid skill. However, oceanographic implications of the GRACE model are only modest compared to what can be obtained from ocean observations alone. To understand the extent to which this is merely a consequence of a not-optimally converged solution or if a much more accurate geoid field could in principle play a profound role in the ocean estimation procedure, an additional experiment was performed in which the geoid error was artificially reduced relative to all other datasets. Adjustments occur then in all elements of the ocean circulation, including 10% changes in the meridional overturning circulation and the corresponding meridional heat transport in the Atlantic. For an optimal use of new geoid fields, improved error information is required. The error budget of existing time-mean dynamic topography estimates may now be dominated by residual errors in time-mean altimetric corrections. Both these and the model errors need to be better understood before improved geoid estimates can be fully exploited. As is commonly found, the Southern Ocean is of particular concern.


1997 ◽  
Vol 25 ◽  
pp. 116-120 ◽  
Author(s):  
S. Legutke ◽  
E. Maier-Reimkr ◽  
A. Stössel ◽  
A. Hellbach

A global ocean general circulation model has been coupled with a dynamic thermodynamic sea-ice model. This model has been spun-up in a 1000 year integration using daily atmosphere model data. Main water masses and currents are reproduced as well as the seasonal characteristics of the ice cover of the Northern and Southern Hemispheres. Model results for the Southern Ocean, however, show the ice cover as too thin, and there are large permanent polynyas in the Weddell and Ross Seas. These polynyas are due to a large upward oceanic heat flux caused by haline rejection during the freezing of sea ice. Sensitivity studies were performed to test several ways of treating the sea-surface salinity and the rejected brine. The impact on the ice cover, water-mass characteristics, and ocean circulation are described.


2020 ◽  
Vol 6 (36) ◽  
pp. eaaz9588
Author(s):  
Miriam C. Jones ◽  
Max Berkelhammer ◽  
Katherine J. Keller ◽  
Kei Yoshimura ◽  
Matthew J. Wooller

Anomalously low winter sea ice extent and early retreat in CE 2018 and 2019 challenge previous notions that winter sea ice in the Bering Sea has been stable over the instrumental record, although long-term records remain limited. Here, we use a record of peat cellulose oxygen isotopes from St. Matthew Island along with isotope-enabled general circulation model (IsoGSM) simulations to generate a 5500-year record of Bering Sea winter sea ice extent. Results show that over the last 5500 years, sea ice in the Bering Sea decreased in response to increasing winter insolation and atmospheric CO2, suggesting that the North Pacific is highly sensitive to small changes in radiative forcing. We find that CE 2018 sea ice conditions were the lowest of the last 5500 years, and results suggest that sea ice loss may lag changes in CO2 concentrations by several decades.


2014 ◽  
Vol 27 (3) ◽  
pp. 1193-1209 ◽  
Author(s):  
Timothy Andrews

Abstract An atmospheric general circulation model is forced with observed monthly sea surface temperature and sea ice boundary conditions, as well as forcing agents that vary in time, for the period 1979–2008. The simulations are then repeated with various forcing agents, individually and in combination, fixed at preindustrial levels. The simple experimental design allows the diagnosis of the model’s global and regional time-varying effective radiative forcing from 1979 to 2008 relative to preindustrial levels. Furthermore the design can be used to (i) calculate the atmospheric model’s feedback/sensitivity parameters to observed changes in sea surface temperature and (ii) separate those aspects of climate change that are directly driven by the forcing from those driven by large-scale changes in sea surface temperature. It is shown that the atmospheric response to increased radiative forcing over the last 3 decades has halved the global precipitation response to surface warming. Trends in sea surface temperature and sea ice are found to contribute only ~60% of the global land, Northern Hemisphere, and summer land warming trends. Global effective radiative forcing is ~1.5 W m−2 in this model, with anthropogenic and natural contributions of ~1.3 and ~0.2 W m−2, respectively. Forcing increases by ~0.5 W m−2 decade−1 over the period 1979–2008 or ~0.4 W m−2 decade−1 if years strongly influenced by volcanic forcings—which are nonlinear with time—are excluded from the trend analysis. Aerosol forcing shows little global decadal trend due to offsetting regional trends whereby negative aerosol forcing weakens in Europe and North America but continues to strengthen in Southeast Asia.


Sign in / Sign up

Export Citation Format

Share Document