Towards Assessing NARCCAP Regional Climate Model Credibility for the North American Monsoon: Current Climate Simulations*

2013 ◽  
Vol 26 (22) ◽  
pp. 8802-8826 ◽  
Author(s):  
Melissa S. Bukovsky ◽  
David J. Gochis ◽  
Linda O. Mearns

Abstract The authors examine 17 dynamically downscaled simulations produced as part of the North American Regional Climate Change Assessment Program (NARCCAP) for their skill in reproducing the North American monsoon system. The focus is on precipitation and the drivers behind the precipitation biases seen in the simulations of the current climate. Thus, a process-based approach to the question of model fidelity is taken in order to help assess confidence in this suite of simulations. The results show that the regional climate models (RCMs) forced with a reanalysis product and atmosphere-only global climate model (AGCM) time-slice simulations perform reasonably well over the core Mexican and southwest United States regions. Some of the dynamically downscaled simulations do, however, have strong dry biases in Arizona that are related to their inability to develop credible monsoon flow structure over the Gulf of California. When forced with different atmosphere–ocean coupled global climate models (AOGCMs) for the current period, the skill of the RCMs subdivides largely by the skill of the forcing or “parent” AOGCM. How the inherited biases affect the RCM simulations is investigated. While it is clear that the AOGCMs have a large influence on the RCMs, the authors also demonstrate where the regional models add value to the simulations and discuss the differential credibility of the six RCMs (17 total simulations), two AGCM time slices, and four AOGCMs examined herein. It is found that in-depth analysis of parent GCM and RCM scenarios can identify a meaningful subset of models that can produce credible simulations of the North American monsoon precipitation.

2021 ◽  
pp. 1-43
Author(s):  
Weina Guan ◽  
Xianan Jiang ◽  
Xuejuan Ren ◽  
Gang Chen ◽  
Qinghua Ding

AbstractThe leading interannual mode of winter surface air temperature over the North American (NA) sector, characterized by a “Warm Arctic, Cold Continents” (WACC) pattern, exerts pronounced influences on NA weather and climate, while its underlying mechanisms remain elusive. In this study, the relative roles of surface boundary forcing versus internal atmospheric processes for the formation of the WACC pattern are quantitatively investigated using a combined analysis of observations and large-ensemble atmospheric global climate model simulations. Internal atmospheric variability is found to play an important role in shaping the year-to-year WACC variability, contributing to about half of the total variance. An anomalous SST pattern resembling the North Pacific Mode is identified as a major surface boundary forcing pattern in driving the interannual WACC variability over the NA sector, with a minor contribution from sea ice variability over the Chukchi- Bering Seas. Findings from this study not only lead to improved understanding of underlying physics regulating the interannual WACC variability, but also provide important guidance for improved modeling and prediction of regional climate variability over NA and the Arctic region.


Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 23 ◽  
Author(s):  
Carlos Garijo ◽  
Luis Mediero

Climate model projections can be used to assess the expected behaviour of extreme precipitations in the future due to climate change. The European part of the Coordinated Regional Climate Downscalling Experiment (EURO-CORDEX) provides precipitation projections for the future under various representative concentration pathways (RCPs) through regionalised Global Climate Model (GCM) outputs by a set of Regional Climate Models (RCMs). In this work, 12 combinations of GCM and RCM under two scenarios (RCP 4.5 and RCP 8.5) supplied by the EURO-CORDEX are analysed for the Iberian Peninsula. Precipitation quantiles for a set of probabilities of non-exceedance are estimated by using the Generalized Extreme Value (GEV) distribution and L-moments. Precipitation quantiles expected in the future are compared with the precipitation quantiles in the control period for each climate model. An approach based on Monte Carlo simulations is developed in order to assess the uncertainty from the climate model projections. Expected changes in the future are compared with the sampling uncertainty in the control period. Thus, statistically significant changes are identified. The higher the significance threshold, the fewer cells with significant changes are identified. Consequently, a set of maps are obtained in order to assist the decision-making process in subsequent climate change studies.


2020 ◽  
Author(s):  
Raphael Hébert ◽  
Ulrike herzschuh ◽  
Thomas Laepple

<p>Multidecadal to millenial timescale climate variability has been investigated over the ocean</p><p>using extensive proxy data and it was found to yield coherent interproxy estimates of global and regional sea-surface temperature (SST) climate variability (Laepple and Huybers, 2014). Global Climate Model (GCM) simulations on the other hand, were found to exhibit an increasingly large deficit of regional SST climate variability for increasingly longer timescales.</p><p>Further investigation is needed to better quantify terrestrial climate variability for long</p><p>timescales and validate climate models.</p><p>Vegetation related proxies such as tree rings and pollen records are the most widespread</p><p>types of archives available to investigate terrestrial climate variability. Tree ring records are</p><p>particularly useful for short time scales estimates due to their annual resolution, while pollen-based reconstructions are necessary to cover the longer timescales. In the present work, we use a large database of 1873 pollen records covering the northern hemisphere in order to quantify Holocene vegetation and climate variability for the first time at centennial to multi-millenial timescales.</p><p>To ensure the robustness of our results, we are particularly interested in the spatio-temporal representativity of the archived signal in pollen records after taking into account the effective spatial scale, the intermittent and irregular sampling, the age-uncertainty and the sediment mixing effect. A careful treatment of the proxy formation allows us to investigate the spatial correlation structure of the pollen-based climate reconstructions as a function of timescales. The pollen data results are then contrasted with the analysis replicated using transient Holocene simulations produced with state-of-the-art climate models as well as stochastic climate model simulations.Our results indicate a substantial gap in terrestrial climate variability between the climate model simulations and the pollen reconstructions at centennial to multi-millenial timescales, mirroring the variability gap found in the marine domain. Finally, we investigate how future climate model projections with greater internal variability would be affected, and how this increases the uncertainty of regional land temperature projections.</p>


2016 ◽  
Vol 29 (17) ◽  
pp. 6037-6064 ◽  
Author(s):  
Timothy M. Lahmers ◽  
Christopher L. Castro ◽  
David K. Adams ◽  
Yolande L. Serra ◽  
John J. Brost ◽  
...  

Abstract Transient inverted troughs (IVs) are a trigger for severe weather during the North American monsoon (NAM) in the southwest contiguous United States (CONUS) and northwest Mexico. These upper-tropospheric disturbances enhance the synoptic-scale and mesoscale environment for organized convection, increasing the chances for microbursts, straight-line winds, blowing dust, and flash flooding. This work considers changes in the track density climatology of IVs between 1951 and 2010. IVs are tracked as potential vorticity (PV) anomalies on the 250-hPa surface from a regional climate model that dynamically downscales the NCEP–NCAR Reanalysis 1. Late in the NAM season, a significant increase in IV track density over the 60-yr period is observed over Southern California and western Arizona, coupled with a slight decrease over northwest Mexico. Changes in precipitation are evaluated on days when an IV is observed and days without an IV, using high-resolution model-simulated precipitation estimates and CPC gridded precipitation observations. Because of changes in the spatial distribution of IVs during the 1951–2010 analysis period, which are associated with a strengthening of the monsoon ridge, it is suggested that IVs have played a lesser role in the initiation and organization of monsoon convection in the southwest CONUS during recent warm seasons.


2014 ◽  
Vol 27 (12) ◽  
pp. 4566-4580 ◽  
Author(s):  
Abraham Torres-Alavez ◽  
Tereza Cavazos ◽  
Cuauhtemoc Turrent

Abstract The hypothesis that global warming during the twenty-first century will increase the land–sea thermal contrast (LSTC) and therefore the intensity of early season precipitation of the North American monsoon (NAM) is examined. To test this hypothesis, future changes (2075–99 minus 1979–2004 means) in LSTC, moisture flux convergence (MFC), vertical velocity, and precipitation in the region are analyzed using six global climate models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) under the representative concentration pathway 8.5 (RCP8.5) emission scenario. A surface LSTC index shows that the continent becomes warmer than the ocean in May in the North American Regional Reanalysis (NARR) and ECMWF Interim Re-Analysis (ERA-Interim) and in June in the mean ensemble of the GCMs (ens_GCMs), and the magnitude of the positive LSTC is greater in the reanalyses than in the ens_GCMs during the historic period. However, the reanalyses underestimate July–August precipitation in the NAM region, while the ens_GCMs reproduces the peak season surprisingly well but overestimates it the rest of the year. The future ens_GCMs projects a doubling of the magnitude of the positive surface LSTC and an earlier start of the continental summer warming in mid-May. Contrary to the stated hypothesis, however, the mean projection suggests a slight decrease of monsoon coastal precipitation during June–August (JJA), which is attributed to increased midtropospheric subsidence, a reduced midtropospheric LSTC, and reduced MFC in the NAM coastal region. In contrast, the future ens_GCMs produces increased MFC and precipitation over the adjacent mountains during JJA and significantly more rainfall over the entire NAM region during September–October, weakening the monsoon retreat.


2013 ◽  
Vol 14 (4) ◽  
pp. 1212-1227 ◽  
Author(s):  
Sho Kawazoe ◽  
William J. Gutowski

Abstract The authors analyze the ability of the North American Regional Climate Change Assessment Program's ensemble of climate models to simulate very heavy daily precipitation and its supporting processes, comparing simulations that used observation-based boundary conditions with observations. The analysis includes regional climate models and a time-slice global climate model that all used approximately half-degree resolution. Analysis focuses on an upper Mississippi River region for winter (December–February), when it is assumed that resolved synoptic circulation governs precipitation. All models generally reproduce the precipitation-versus-intensity spectrum seen in observations well, with a small tendency toward producing overly strong precipitation at high-intensity thresholds, such as the 95th, 99th, and 99.5th percentiles. Further analysis focuses on precipitation events exceeding the 99.5th percentile that occur simultaneously at several points in the region, yielding so-called “widespread events.” Examination of additional fields shows that the models produce very heavy precipitation events for the same physical conditions seen in the observations.


Author(s):  
Filippo Giorgi ◽  
Erika Coppola ◽  
Daniela Jacob ◽  
Claas Teichmann ◽  
Sabina Abba Omar ◽  
...  

AbstractWe describe the first effort within the Coordinated Regional Climate Downscaling Experiment - Coordinated Output for Regional Evaluation, or CORDEX-CORE EXP-I. It consists of a set of 21st century projections with two regional climate models (RCMs) downscaling three global climate model (GCM) simulations from the CMIP5 program, for two greenhouse gas concentration pathways (RCP8.5 and RCP2.6), over 9 CORDEX domains at ~25 km grid spacing. Illustrative examples from the initial analysis of this ensemble are presented, covering a wide range of topics, such as added value of RCM nesting, extreme indices, tropical and extratropical storms, monsoons, ENSO, severe storm environments, emergence of change signals, energy production. They show that the CORDEX-CORE EXP-I ensemble can provide downscaled information of unprecedented comprehensiveness to increase understanding of processes relevant for regional climate change and impacts, and to assess the added value of RCMs. The CORDEX-CORE EXP-I dataset, which will be incrementally augmented with new simulations, is intended to be a public resource available to the scientific and end-user communities for application to process studies, impacts on different socioeconomic sectors and climate service activities. The future of the CORDEX-CORE initiative is also discussed.


2021 ◽  
Author(s):  
William Boos ◽  
Salvatore Pascale

Abstract The core of the North American monsoon consists of a band of intense rainfall along the west coast of Mexico[1, 2] and is commonly thought to be caused by thermal forcing from both land and the elevated terrain of that region[3-5]. Here we use observations, a global climate model, and stationary wave solutions to show that this rainfall maximum is instead generated when Mexico's Sierra Madre mountains mechanically force an adiabatic stationary wave by diverting extratropical eastward winds toward the equator; eastward, upslope flow in that wave lifts warm and moist air to produce convective rainfall. Land surface heat fluxes do precondition the atmosphere for convection, particularly in summer afternoons, but even if amplified are insufficient for producing the observed rainfall maximum. These results, together with dynamical structures in observations and models, indicate that the core monsoon should be understood as convectively enhanced orographic rainfall in a mechanically forced stationary wave, not as a classic, thermally forced tropical monsoon. This has implications for the response of the North American monsoon to past and future global climate change, making trends in jet stream interactions with orography of central importance.


2019 ◽  
Vol 58 (3) ◽  
pp. 527-549 ◽  
Author(s):  
Ehud Strobach ◽  
Golan Bel

AbstractRegional climate models (RCMs) are expected to provide better representations of the climate dynamics because of their higher spatial resolutions. Here, we generated an ensemble of decadal (2006–36) RCM predictions for the area of Israel, which spans a considerable climatic gradient and comprises complex terrain. We used the WRF Model forced by the MIROC5 global climate model (GCM). The ensemble was generated by choosing different combinations of radiation, microphysics, surface layer, and planetary boundary layer parameterizations. The simulation results were compared with meteorological station data for the first simulated decade. For the minimum surface temperature, all the RCM configurations performed better than the driving GCM, while for the maximum surface temperature, only three out of eight configurations improved the predictions. The RCM configurations had higher errors in predicting the precipitation, but four configurations had comparable errors to the GCM. For the next two decades, the ensemble average predicts an increase of 0.51° and 0.40°C decade−1 for the average daily minimum and maximum surface temperatures, respectively. No significant change is predicted in the precipitation. We found that all the parameterizations affect the predictions of the surface temperatures and precipitation [e.g., the CAM radiation scheme simulates colder temperatures than the RRTM for GCMs (RRTMG)] but the PBL and surface layer scheme has the largest effect on the errors. Spectral nudging was found to have a considerable effect on the deviations of the precipitation predicted by the WRF configurations from the predictions of the GCM and a much smaller effect on the surface temperature predictions.


2021 ◽  
Vol 13 (11) ◽  
pp. 2058
Author(s):  
Gnim Tchalim Gnitou ◽  
Guirong Tan ◽  
Ruoyun Niu ◽  
Isaac Kwesi Nooni

The present study investigates the skills of CORDEX-CORE precipitation outputs in simulating Africa’s key seasonal climate features, emphasizing the added value (AV) of the dynamical downscaling approach from which they were derived. The results indicate the models’ good skills in capturing African rainfall patterns and dynamics at satellite-based observation resolutions, with up to 65.17% significant positive AV spatial coverage for the CCLM5 model and up to 55.47% significant positive AV spatial coverage for the REMO model. Unavoidable biases are however present in rainfall-abundant areas and are reflected in the AV results, but vary based on the season, the sub-area, and the Global Climate Model–Regional Climate Models (GCM-RCM) combination considered. The RCMs’ ensemble mean generally performs better than individual GCM–RCM simulations. A further analysis of the GCM–RCM model chain indicates a strong influence of the dynamical downscaling approach on the driving GCMs. However, exceptions are found in some seasons for specific RCMs’ outputs, where GCMs are influential. The findings also revealed that observational uncertainties can influence AV and contribute to a 6 to 34% difference in significant positive AV spatial coverage results. An analysis of these results suggests that the AV by CORDEX-CORE simulations over Africa depend on how well the GCM physics are integrated to those of the RCMs and how these features are accommodated in the high-resolution setting of the downscaling experiments. The deficiencies of the CORDEX-CORE simulations could be related to how well key processes are represented within the RCM models. For Africa, these results show that CORDEX-CORE products could be adequate for a wide range of high-resolution precipitation data applications.


Sign in / Sign up

Export Citation Format

Share Document