scholarly journals CFSv2-Based Seasonal Hydroclimatic Forecasts over the Conterminous United States

2013 ◽  
Vol 26 (13) ◽  
pp. 4828-4847 ◽  
Author(s):  
Xing Yuan ◽  
Eric F. Wood ◽  
Joshua K. Roundy ◽  
Ming Pan

AbstractThere is a long history of debate on the usefulness of climate model–based seasonal hydroclimatic forecasts as compared to ensemble streamflow prediction (ESP). In this study, the authors use NCEP's operational forecast system, the Climate Forecast System version 2 (CFSv2), and its previous version, CFSv1, to investigate the value of climate models by conducting a set of 27-yr seasonal hydroclimatic hindcasts over the conterminous United States (CONUS). Through Bayesian downscaling, climate models have higher squared correlation R2 and smaller error than ESP for monthly precipitation, and the forecasts conditional on ENSO have further improvements over southern basins out to 4 months. Verification of streamflow forecasts over 1734 U.S. Geological Survey (USGS) gauges shows that CFSv2 has moderately smaller error than ESP, but all three approaches have limited added skill against climatology beyond 1 month because of overforecasting or underdispersion errors. Using a postprocessor, 60%–70% of probabilistic streamflow forecasts are more skillful than climatology. All three approaches have plausible predictions of soil moisture drought frequency over the central United States out to 6 months, and climate models provide better results over the central and eastern United States. The R2 of drought extent is higher for arid basins and for the forecasts initiated during dry seasons, but significant improvements from CFSv2 occur in different seasons for different basins. The R2 of drought severity accumulated over CONUS is higher during winter, and climate models present added value, especially at long leads. This study indicates that climate models can provide better seasonal hydroclimatic forecasts than ESP through appropriate downscaling procedures, but significant improvements are dependent on the variables, seasons, and regions.

2016 ◽  
Vol 29 (4) ◽  
pp. 1269-1285 ◽  
Author(s):  
Darren L. Ficklin ◽  
John T. Abatzoglou ◽  
Scott M. Robeson ◽  
Anna Dufficy

Abstract Global climate models (GCMs) have biases when simulating historical climate conditions, which in turn have implications for estimating the hydrological impacts of climate change. This study examines the differences in projected changes of aridity [defined as the ratio of precipitation (P) over potential evapotranspiration (PET), or P/PET] and the Palmer drought severity index (PDSI) between raw and bias-corrected GCM output for the continental United States (CONUS). For historical simulations (1950–79) the raw GCM ensemble median has a positive precipitation bias (+24%) and negative PET bias (−7%) compared to the bias-corrected output when averaged over CONUS with the most acute biases over the interior western United States. While both raw and bias-corrected GCM ensembles project more aridity (lower P/PET) for CONUS in the late twenty-first century (2070–99), relative enhancements in aridity were found for bias-corrected data compared to the raw GCM ensemble owing to positive precipitation and negative PET biases in the raw GCM ensemble. However, the bias-corrected GCM ensemble projects less acute decreases in summer PDSI for the southwestern United States compared to the raw GCM ensemble (from 1 to 2 PDSI units higher), stemming from biases in precipitation amount and seasonality in the raw GCM ensemble. Compared to the raw GCM ensemble, bias-corrected GCM inputs not only correct for systematic errors but also can produce high-resolution projections that are useful for impact analyses. Therefore, changes in hydroclimate metrics often appear considerably different in bias-corrected output compared to raw GCM output.


2021 ◽  
Author(s):  
Kelly Mahoney ◽  
James D. Scott ◽  
Michael Alexander ◽  
Rachel McCrary ◽  
Mimi Hughes ◽  
...  

AbstractUnderstanding future precipitation changes is critical for water supply and flood risk applications in the western United States. The North American COordinated Regional Downscaling EXperiment (NA-CORDEX) matrix of global and regional climate models at multiple resolutions (~ 50-km and 25-km grid spacings) is used to evaluate mean monthly precipitation, extreme daily precipitation, and snow water equivalent (SWE) over the western United States, with a sub-regional focus on California. Results indicate significant model spread in mean monthly precipitation in several key water-sensitive areas in both historical and future projections, but suggest model agreement on increasing daily extreme precipitation magnitudes, decreasing seasonal snowpack, and a shortening of the wet season in California in particular. While the beginning and end of the California cool season are projected to dry according to most models, the core of the cool season (December, January, February) shows an overall wetter projected change pattern. Daily cool-season precipitation extremes generally increase for most models, particularly in California in the mid-winter months. Finally, a marked projected decrease in future seasonal SWE is found across all models, accompanied by earlier dates of maximum seasonal SWE, and thus a shortening of the period of snow cover as well. Results are discussed in the context of how the diverse model membership and variable resolutions offered by the NA-CORDEX ensemble can be best leveraged by stakeholders faced with future water planning challenges.


2017 ◽  
Author(s):  
Matthew C. Wozniak ◽  
Allison Steiner

Abstract. We develop a prognostic model of Pollen Emissions for Climate Models (PECM) for use within regional and global climate models to simulate pollen counts over the seasonal cycle based on geography, vegetation type and meteorological parameters. Using modern surface pollen count data, empirical relationships between prior-year annual average temperature and pollen season start dates and end dates are developed for deciduous broadleaf trees (Acer, Alnus, Betula, Fraxinus, Morus, Platanus, Populus, Quercus, Ulmus), evergreen needleleaf trees (Cupressaceae, Pinaceae), grasses (Poaceae; C3, C4), and ragweed (Ambrosia). This regression model explains as much as 57 % of the variance in pollen phenological dates, and it is used to create a climate-flexible phenology that can be used to study the response of wind-driven pollen emissions to climate change. The emissions model is evaluated in a regional climate model (RegCM4) over the continental United States by prescribing an emission potential from PECM and transporting pollen as aerosol tracers. We evaluate two different pollen emissions scenarios in the model: (1) using a taxa-specific land cover database, phenology and emission potential, and (2) a PFT-based land cover, phenology and emission potential. The resulting surface concentrations for both simulations are evaluated against observed surface pollen counts in five climatic subregions. Given prescribed pollen emissions, the RegCM4 simulates observed concentrations within an order of magnitude, although the performance of the simulations in any subregion is strongly related to the land cover representation and the number of observation sites used to create the empirical phenological relationship. The taxa-based model provides a better representation of the phenology of tree-based pollen counts than the PFT-based model, however we note that the PFT-based version provides a useful and climate-flexible emissions model for the general representation of the pollen phenology over the United States.


Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 262 ◽  
Author(s):  
Coraline Wyard ◽  
Sébastien Doutreloup ◽  
Alexandre Belleflamme ◽  
Martin Wild ◽  
Xavier Fettweis

The use of regional climate models (RCMs) can partly reduce the biases in global radiative flux (Eg↓) that are found in reanalysis products and global models, as they allow for a finer spatial resolution and a finer parametrisation of surface and atmospheric processes. In this study, we assess the ability of the MAR («Modèle Atmosphérique Régional») RCM to reproduce observed changes in Eg↓, and we investigate the added value of MAR with respect to reanalyses. Simulations were performed at a horizontal resolution of 5 km for the period 1959–2010 by forcing MAR with different reanalysis products: ERA40/ERA-interim, NCEP/NCAR-v1, ERA-20C, and 20CRV2C. Measurements of Eg↓ from the Global Energy Balance Archive (GEBA) and from the Royal Meteorological Institute of Belgium (RMIB), as well as cloud cover observations from Belgocontrol and RMIB, were used for the evaluation of the MAR model and the forcing reanalyses. Results show that MAR enables largely reducing the mean biases that are present in the reanalyses. The trend analysis shows that only MAR forced by ERA40/ERA-interim shows historical trends, which is probably because the ERA40/ERA-interim has a better horizontal resolution and assimilates more observations than the other reanalyses that are used in this study. The results suggest that the solar brightening observed since the 1980s in Belgium has mainly been due to decreasing cloud cover.


2009 ◽  
Vol 24 (5) ◽  
pp. 1173-1190 ◽  
Author(s):  
Michael E. Charles ◽  
Brian A. Colle

Abstract This paper verifies extratropical cyclones around North America and the adjacent oceans within the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) and North American Mesoscale (NAM) models during the 2002–07 cool seasons (October–March). The analyzed cyclones in the Global Forecast System (GFS) model, North American Mesoscale (NAM) model, and the North American Regional Reanalysis (NARR) were also compared against sea level pressure (SLP) observations around extratropical cyclones. The GFS analysis of SLP was clearly superior to the NAM and NARR analyses. The analyzed cyclone pressures in the NAM improved in 2006–07 when its data assimilation was switched to the Gridpoint Statistical Interpolation (GSI). The NCEP GFS has more skillful cyclone intensity and position forecasts than the NAM over the continental United States and adjacent oceans, especially over the eastern Pacific, where the NAM has a large positive (underdeepening) bias in cyclone central pressure. For the short-term (0–60 h) forecasts, the GFS and NAM cyclone errors over the eastern Pacific are larger than the other regions to the east. There are relatively large biases in cyclone position for both models, which vary spatially around North America. The eastern Pacific has four to eight cyclone events per year on average, with errors >10 mb at hour 48 in the GFS; this number has not decreased in recent years. There has been little improvement in the 0–2-day cyclone forecasts during the past 5 yr over the eastern United States, while there has been a relatively large improvement in the cyclone pressure predictions over the eastern Pacific in the NAM.


2019 ◽  
Vol 20 (7) ◽  
pp. 1339-1357 ◽  
Author(s):  
Peter B. Gibson ◽  
Duane E. Waliser ◽  
Huikyo Lee ◽  
Baijun Tian ◽  
Elias Massoud

Abstract Climate model evaluation is complicated by the presence of observational uncertainty. In this study we analyze daily precipitation indices and compare multiple gridded observational and reanalysis products with regional climate models (RCMs) from the North American component of the Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) multimodel ensemble. In the context of model evaluation, observational product differences across the contiguous United States (CONUS) are also deemed nontrivial for some indices, especially for annual counts of consecutive wet days and for heavy precipitation indices. Multidimensional scaling (MDS) is used to directly include this observational spread into the model evaluation procedure, enabling visualization and interpretation of model differences relative to a “cloud” of observational uncertainty. Applying MDS to the evaluation of NA-CORDEX RCMs reveals situations of added value from dynamical downscaling, situations of degraded performance from dynamical downscaling, and the sensitivity of model performance to model resolution. On precipitation days, higher-resolution RCMs typically simulate higher mean and extreme precipitation rates than their lower-resolution pairs, sometimes improving model fidelity with observations. These results document the model spread and biases in daily precipitation extremes across the full NA-CORDEX model ensemble. The often-large divergence between in situ observations, satellite data, and reanalysis, shown here for CONUS, is especially relevant for data-sparse regions of the globe where satellite and reanalysis products are extensively relied upon. This highlights the need to carefully consider multiple observational products when evaluating climate models.


2020 ◽  
Vol 47 (3) ◽  
pp. 326-336
Author(s):  
Mohammad Madani ◽  
Vinod Chilkoti ◽  
Tirupati Bolisetti ◽  
Rajesh Seth

In most of the climate change impact assessment studies, climate model bias is considered to be stationary between the control and scenario periods. Few methods are found in the literature that addresses the issue of nonstationarity in correcting the bias. To overcome the shortcomings reported in these approaches, three new methods of bias correction (NBC_μ, NBC_σ, and NBC_bs) are presented. The methods are improvised versions of previous techniques relying on distribution mapping. The methods are tested using split sample approach over 50-year historical period for nine climate stations in Ontario, using six regional climate models. The average bias reduction improvement by new methods, in mean daily and monthly precipitation, was found to be 73.9%, 74.3%, and 77.4%, respectively, higher than that obtained by the previous methods (eQM 67.7% and CNCDFm_NP 64.1%). Thus, the methods are found to be more effective in accounting for nonstationarity in the model bias.


2013 ◽  
Vol 17 (25) ◽  
pp. 1-22 ◽  
Author(s):  
Satish Bastola ◽  
Vasubandhu Misra ◽  
Haiqin Li

Abstract The authors evaluate the skill of a suite of seasonal hydrological prediction experiments over 28 watersheds throughout the southeastern United States (SEUS), including Florida, Georgia, Alabama, South Carolina, and North Carolina. The seasonal climate retrospective forecasts [the Florida Climate Institute–Florida State University Seasonal Hindcasts at 50-km resolution (FISH50)] is initialized in June and integrated through November of each year from 1982 through 2001. Each seasonal climate forecast has six ensemble members. An earlier study showed that FISH50 represents state-of-the-art seasonal climate prediction skill for the summer and fall seasons, especially in the subtropical and higher latitudes. The retrospective prediction of streamflow is based on multiple calibrated rainfall–runoff models. The hydrological models are forced with rainfall from FISH50, (quantile based) bias-corrected FISH50 rainfall (FISH50_BC), and resampled historical rainfall observations based on matching observed analogs of forecasted quartile seasonal rainfall anomalies (FISH50_Resamp). The results show that direct use of output from the climate model (FISH50) results in huge biases in predicted streamflow, which is significantly reduced with bias correction (FISH50_BC) or by FISH50_Resamp. On a discouraging note, the authors find that the deterministic skill of retrospective streamflow prediction as measured by the normalized root-mean-square error is poor compared to the climatological forecast irrespective of how FISH50 (e.g., FISH50_BC, FISH50_Resamp) is used to force the hydrological models. However, our analysis of probabilistic skill from the same suite of retrospective prediction experiments reveals that, over the majority of the 28 watersheds in the SEUS, significantly higher probabilistic skill than climatological forecast of streamflow can be harvested for the wet/dry seasonal anomalies (i.e., extreme quartiles) using FISH50_Resamp as the forcing. The authors contend that, given the nature of the relatively low climate predictability over the SEUS, high deterministic hydrological prediction skills will be elusive. Therefore, probabilistic hydrological prediction for the SEUS watersheds is very appealing, especially with the current capability of generating a comparatively huge ensemble of seasonal hydrological predictions for each watershed and for each season, which offers a robust estimate of associated forecast uncertainty.


2017 ◽  
Vol 10 (11) ◽  
pp. 4105-4127 ◽  
Author(s):  
Matthew C. Wozniak ◽  
Allison L. Steiner

Abstract. We develop a prognostic model called Pollen Emissions for Climate Models (PECM) for use within regional and global climate models to simulate pollen counts over the seasonal cycle based on geography, vegetation type, and meteorological parameters. Using modern surface pollen count data, empirical relationships between prior-year annual average temperature and pollen season start dates and end dates are developed for deciduous broadleaf trees (Acer, Alnus, Betula, Fraxinus, Morus, Platanus, Populus, Quercus, Ulmus), evergreen needleleaf trees (Cupressaceae, Pinaceae), grasses (Poaceae; C3, C4), and ragweed (Ambrosia). This regression model explains as much as 57 % of the variance in pollen phenological dates, and it is used to create a climate-flexible phenology that can be used to study the response of wind-driven pollen emissions to climate change. The emissions model is evaluated in the Regional Climate Model version 4 (RegCM4) over the continental United States by prescribing an emission potential from PECM and transporting pollen as aerosol tracers. We evaluate two different pollen emissions scenarios in the model using (1) a taxa-specific land cover database, phenology, and emission potential, and (2) a plant functional type (PFT) land cover, phenology, and emission potential. The simulated surface pollen concentrations for both simulations are evaluated against observed surface pollen counts in five climatic subregions. Given prescribed pollen emissions, the RegCM4 simulates observed concentrations within an order of magnitude, although the performance of the simulations in any subregion is strongly related to the land cover representation and the number of observation sites used to create the empirical phenological relationship. The taxa-based model provides a better representation of the phenology of tree-based pollen counts than the PFT-based model; however, we note that the PFT-based version provides a useful and climate-flexible emissions model for the general representation of the pollen phenology over the United States.


Sign in / Sign up

Export Citation Format

Share Document