scholarly journals Changes in Moisture Flux over the Tibetan Plateau during 1979–2011 and Possible Mechanisms

2014 ◽  
Vol 27 (5) ◽  
pp. 1876-1893 ◽  
Author(s):  
Yanhong Gao ◽  
Lan Cuo ◽  
Yongxin Zhang

Abstract Changes in moisture as represented by P − E (precipitation − evapotranspiration) and the possible causes over the Tibetan Plateau (TP) during 1979–2011 are examined based on the Global Land Data Assimilation Systems (GLDAS) ensemble mean runoff and reanalyses. It is found that the TP is getting wetter as a whole but with large spatial variations. The climatologically humid southeastern TP is getting drier while the vast arid and semiarid northwestern TP is getting wetter. The Clausius–Clapeyron relation cannot be used to explain the changes in P − E over the TP. Through decomposing the changes in P − E into three major components—dynamic, thermodynamic, and transient eddy components—it is noted that the dynamic component plays a key role in the changes of P − E over the TP. The thermodynamic component contributes positively over the southern and central TP whereas the transient eddy component tends to reinforce (offset) the dynamic component over the southern and parts of the northern TP (central TP). Seasonally, the dynamic component contributes substantially to changes in P − E during the wet season, with small contributions from the thermodynamic and transient eddy components. Further analyses reveal the poleward shift of the East Asian westerly jet stream by 0.7° and poleward moisture transport as well as the intensification of the summer monsoon circulation due to global warming, which are shown to be responsible for the general wetting trend over the TP. It is further demonstrated that changes in local circulations that occur due to the differential heating of the TP and its surroundings are responsible for the spatially varying changes in moisture over the TP.

2019 ◽  
Vol 32 (20) ◽  
pp. 7037-7053
Author(s):  
Hongwen Zhang ◽  
Yanhong Gao ◽  
Jianwei Xu ◽  
Yu Xu ◽  
Yingsha Jiang

Abstract To meet the requirement of high-resolution datasets for many applications, a dynamical downscaling approach using a regional climate model (the WRF Model) driven by a global climate model (CCSM4) has been adopted. This study focuses on projections of future moisture flux changes over the Tibetan Plateau (TP). First, the downscaling results for the historical period (1980–2005) are evaluated for precipitation P, evaporation E, and precipitation minus evaporation P − E against Global Land Data Assimilation System (GLDAS) data. The mechanism of P − E changes is analyzed by decomposition into dynamic, thermodynamic, and transient eddy components. Whether the historical period changes and mechanisms continue into the future (2010–2100) is investigated using the WRF and CCSM model projections under the RCP4.5 and RCP8.5 scenarios. Compared with coarse-resolution forcing, downscaling was found to better reproduce the historical spatial patterns and seasonal mean of annual average P, E, and P − E over the TP. WRF projects a diverse spatial variation of P − E changes, with an increase in the northern TP and a decrease in the southern TP, compared with the uniform increase in CCSM. The dynamic component dominates P − E changes for the historical period in both the CCSM and WRF projections. In the future, however, the thermodynamic component in CCSM dominates P − E changes under RCP4.5 and RCP8.5 from the near-term (2010–39) to the long-term (2070–99) future. Unlike the CCSM projections, the WRF projections reproduce the mechanism seen in the historical period—that is, the dynamic component dominates P − E changes. Furthermore, future P − E changes in the dynamical downscaling are less sensitive to warming than its coarse-resolution forcing.


2021 ◽  
pp. 1-59
Author(s):  
QIAOLING REN ◽  
XINGWEN JIANG ◽  
YANG ZHANG ◽  
ZHENNING LI ◽  
SONG YANG

AbstractIt is known that the Tibetan Plateau (TP) can weaken the transient eddies (TEs) transported along the westerly jet stream. This study investigates the effects of the persistently suppressed TEs by the TP on the East Asian summer monsoon and the associated mechanisms using the NCAR Community Earth System Model. A nudging method is used to modify the suppression of the TEs without changing the steady dynamic and thermodynamic effects of the TP.The suppressed TEs by the TP weaken the East Asian westerly jet stream through the weakened poleward TE vorticity flux. On the one hand, the weakened jet stream leads to less (more) rainfall in northern (southern) East Asia by inducing anomalous moisture convergence, mid-tropospheric warm advection, and upper-level divergence, particularly in early summer when the eastward propagation of TE suppression by the TP is strong. On the other hand, the precipitation anomalies can shift the East Asian westerly jet stream southward and promote the moisture convergence in southern East Asia through latent heat release. Therefore, the persistent suppression of the TEs leads to a southward shift of the East Asian rain belt by a convective feedback, as previously found that the steady thermodynamic and dynamic forcings of the TP favored a northward shift of the rain belt. This study suggests that the anomalously weak TEs can lead to the south-more-north-less rainfall change over East Asia.


2017 ◽  
Vol 30 (15) ◽  
pp. 5791-5803 ◽  
Author(s):  
Yunying Li ◽  
Minghua Zhang

Cumulus (Cu) from shallow convection is one of the dominant cloud types over the Tibetan Plateau (TP) in the summer according to CloudSat– CALIPSO observations. Its thermodynamic effects on the atmospheric environment and impacts on the large-scale atmospheric circulation are studied in this paper using the Community Atmospheric Model, version 5.3 (CAM5.3). It is found that the model can reasonably simulate the unique distribution of diabatic heating and Cu over the TP. Shallow convection provides the dominant diabatic heating and drying to the lower and middle atmosphere over the TP. A sensitivity experiment indicates that without Cu over the TP, large-scale condensation and stratiform clouds would increase dramatically, which induces enhanced low-level wind and moisture convergence toward the TP, resulting in significantly enhanced monsoon circulation with remote impact on the areas far beyond the TP. Cu therefore acts as a safety valve to modulate the atmospheric environment that prevents the formation of superclusters of stratiform clouds and precipitation over the TP.


Author(s):  
Mike Searle

The Tibetan Plateau is by far the largest region of high elevation, averaging just above 5,000 metres above sea level, and the thickest crust, between 70 and 90 kilometres thick, anywhere in the world. This huge plateau region is very flat—lying in the internally drained parts of the Chang Tang in north and central Tibet, but in parts of the externally drained eastern Tibet, three or four mountain ranges larger and higher than the Alps rise above the frozen plateau. Some of the world’s largest and longest mountain ranges border the plateau, the ‘flaming mountains’ of the Tien Shan along the north-west, the Kun Lun along the north, the Longmen Shan in the east, and of course the mighty Himalaya forming the southern border of the plateau. The great trans-Himalayan mountain ranges of the Pamir and Karakoram are geologically part of the Asian plate and western Tibet but, as we have noted before, unlike Tibet, these ranges have incredibly high relief with 7- and 8-kilometre-high mountains and deeply eroded rivers and glacial valleys. The western part of the Tibetan Plateau is the highest, driest, and wildest area of Tibet. Here there is almost no rainfall and rivers that carry run-off from the bordering mountain ranges simply evaporate into saltpans or disappear underground. Rivers draining the Kun Lun flow north into the Takla Makan Desert, forming seasonal marshlands in the wet season and a dusty desert when the rivers run dry. The discovery of fossil tropical leaves, palm tree trunks, and even bones from miniature Miocene horses suggest that the climate may have been wetter in the past, but this is also dependent on the rise of the plateau. Exactly when Tibet rose to its present elevation is a matter of great debate. Nowadays the Indian Ocean monsoon winds sweep moisture-laden air over the Indian sub-continent during the summer months (late June–September). All the moisture is dumped as the summer monsoon, the torrential rains that sweep across India from south-east to north-west.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jiali Luo ◽  
Wenjun Liang ◽  
Pingping Xu ◽  
Haiyang Xue ◽  
Min Zhang ◽  
...  

Tropopause fold is the primary mechanism for stratosphere-troposphere exchange (STE) at the midlatitudes. Investigation of the features of tropopause folds over the Tibetan Plateau (TP) is important since the TP is a hotspot in global STE. In this study, we investigated seasonal features of the tropopause fold events over the TP using the 40-year ERA-Interim reanalysis data. The development of a tropopause folding case is specifically examined. The results show that shallow tropopause folds occur mostly in spring, while medium and deep folds occur mostly in winter. The multiyear mean monthly frequency of shallow tropopause folds over the TP reaches its maximum value of about 7% in May and then decreases gradually to its minimum value of 1% in August and increases again since September. Deep folds rarely occur in summer and autumn. Both the seasonal cycle and seasonal distribution of total tropopause folds over the TP are dominated by shallow folds. The relative high-frequency areas of medium and deep folds are located over the southern edge of the TP. The westerly jet movement controls the displacement of the high-frequency folding region over the TP. The region of high-frequency tropopause folds is located in the southern portion of the plateau in spring and moves northward in summer. The jet migrates back to the south in autumn and is located along about 30°N in winter, and the region where folds occur most frequently also shifts southward correspondingly. A medium fold event that occurred on 29 December 2018 is used to demonstrate the evolution of a tropopause fold case over the TP in winter; that is, the folding structure moves from west to east, the tropopause pressure is greater than 320 hPa over the folding region, while it is about 200 hPa in the surrounding areas, and the stratospheric air with high potential vorticity (PV) is transported from the high latitudes to the plateau by meridional winds. A trajectory model result verifies the transport pathway of the air parcels during the intrusion event.


2020 ◽  
Author(s):  
Yingying Sha ◽  
Zhengguo Shi

<p>The Tibetan Plateau (TP) has undoubtedly played an essential role in the evolution and strengthening of the coupled climate system of the Asian monsoon and inland arid climate since the Cenozoic. However, a growing number of studies have found that regional and relatively smaller scale topography also has significant impact on Asian climate.<br>By using high resolution atmospheric circulation model, we analyzed the effect of the main body of the TP and its surrounding topography on the evolution of Asian climate. The surrounding topography includes the Yunnan-Guizhou Plateau (YG) at the southeastern margin of the Tibetan Plateau, the Pamir Plateau (Pr) and Tian Shan mountains (TS) at the northern margin and the Mongolian Plateau (MP) further north. The results show that different from the strengthening effect of the main TP, the YG significantly weakens the Indian monsoon. With the uplift of the YG, an anomalous anticyclonic circulation appeared in the lower troposphere over the southwest, resulting in the weakening of monsoon circulation from the Bay of Bengal to the Indian subcontinent and the Arabian sea. The decline in Indian monsoon precipitation caused by the YG accounts for one-third of the total increase in precipitation caused by the entire TP.<br>For the arid interior Asia, the main TP, YG, Pr and TS, as well as the MP all have reduced the annual precipitation in some extent. However, different from the consistent inhibiting effect of the main TP on the precipitation over the arid interior Asia throughout the year, the decreasing effect of the YG and the MP is mainly effective in boreal winter, which is closely related to the mechanical blocking effect. In addition, the Pr and TS play a key role in the temporal and spatial differentiation of precipitation in the arid interior Asia. Before the appearance of the Pr and TS, the precipitation seasonality over the eastern sub-region was characterized with maximum rainfall in spring and winter and minimum rainfall in summer. With the uplift of Pr and TS, the precipitation over the eastern part decreases in winter and significantly increases in summer, which leads to the change of precipitation seasonality to summer dominated.<br>The above results indicate that different part of the extensive-third pole have different influences on the Asian monsoon and inland aridity. It suggests that the Asian monsoon-inland arid climate may have undergone complex evolutionary processes on tectonic scale.</p>


2013 ◽  
Vol 70 (10) ◽  
pp. 3288-3301 ◽  
Author(s):  
Hyo-Seok Park ◽  
Shang-Ping Xie ◽  
Seok-Woo Son

Abstract The orographic effect of the Tibetan Plateau on atmospheric poleward heat transport is investigated using an atmospheric general circulation model. The linear interference between the Tibetan Plateau–induced winds and the eddy temperature field associated with the land–sea thermal contrast is a key factor for enhancing the poleward stationary eddy heat transport. Specifically, Tibetan Plateau–induced stationary waves produce northerlies over the cold eastern Eurasian continent, leading to a poleward heat transport. In another hot spot of stationary eddy heat transport over the eastern North Pacific, Tibetan Plateau–induced stationary waves transport relatively warm marine air northward. In an experiment where the Tibetan Plateau is removed, the poleward heat transport is mostly accomplished by transient eddies, similar to the Southern Hemisphere. In the presence of the Tibetan Plateau, the enhanced stationary eddy heat transport is offset by a comparable reduction in transient eddy heat transport. This compensation between stationary and transient eddy heat transport is seen in observed interannual variability. Both the model and observations indicate that an enhanced poleward heat transport by stationary waves weakens transient eddies by decreasing the meridional temperature gradient and the associated westerlies in midlatitudes.


Sign in / Sign up

Export Citation Format

Share Document