scholarly journals How Well Do Global Climate Models Simulate the Variability of Atlantic Tropical Cyclones Associated with ENSO?

2014 ◽  
Vol 27 (15) ◽  
pp. 5673-5692 ◽  
Author(s):  
Hui Wang ◽  
Lindsey Long ◽  
Arun Kumar ◽  
Wanqiu Wang ◽  
Jae-Kyung E. Schemm ◽  
...  

Abstract The variability of Atlantic tropical cyclones (TCs) associated with El Niño–Southern Oscillation (ENSO) in model simulations is assessed and compared with observations. The model experiments are 28-yr simulations forced with the observed sea surface temperature from 1982 to 2009. The simulations were coordinated by the U.S. Climate Variability and Predictability Research Program (CLIVAR) Hurricane Working Group and conducted with five global climate models (GCMs) with a total of 16 ensemble members. The model performance is evaluated based on both individual model ensemble means and multimodel ensemble mean. The latter has the highest anomaly correlation (0.86) for the interannual variability of TCs. Previous observational studies show a strong association between ENSO and Atlantic TC activity, as well as distinctions during eastern Pacific (EP) and central Pacific (CP) El Niño events. The analysis of track density and TC origin indicates that each model has different mean biases. Overall, the GCMs simulate the variability of Atlantic TCs well with weaker activity during EP El Niño and stronger activity during La Niña. For CP El Niño, there is a slight increase in the number of TCs as compared with EP El Niño. However, the spatial distribution of track density and TC origin is less consistent among the models. Particularly, there is no indication of increasing TC activity over the U.S. southeast coastal region during CP El Niño as in observations. The difference between the models and observations is likely due to the bias of the models in response to the shift of tropical heating associated with CP El Niño, as well as the model bias in the mean circulation.

2020 ◽  
Vol 101 (4) ◽  
pp. E409-E426 ◽  
Author(s):  
Qiaohong Sun ◽  
Chiyuan Miao ◽  
Amir AghaKouchak ◽  
Iman Mallakpour ◽  
Duoying Ji ◽  
...  

Abstract Predicting the changes in teleconnection patterns and related hydroclimate extremes can provide vital information necessary to adapt to the effects of the El Niño–Southern Oscillation (ENSO). This study uses the outputs of global climate models to assess the changes in ENSO-related dry/wet patterns and the frequency of severe dry/wet events. The results show anomalous precipitation responding asymmetrically to La Niña and El Niño, indicating the teleconnections may not simply be strengthened. A “dry to drier, wet to wetter” annual anomalous precipitation pattern was projected during La Niña phases in some regions, with drier conditions over southern North America, southern South America, and southern central Asia, and wetter conditions in Southeast Asia and Australia. These results are robust, with agreement from the 26 models and from a subset of 8 models selected for their good performance in capturing observed patterns. However, we did not observe a similar strengthening of anomalous precipitation during future El Niño phases, for which the uncertainties in the projected influences are large. Under the RCP4.5 emissions scenario, 45 river basins under El Niño conditions and 39 river basins under La Niña conditions were predicted to experience an increase in the frequency of severe dry events; similarly, 59 river basins under El Niño conditions and 61 river basins under La Niña conditions were predicted to have an increase in the frequency of severe wet events, suggesting a likely increase in the risk of floods. Our results highlight the implications of changes in ENSO patterns for natural hazards, disaster management, and engineering infrastructure.


2015 ◽  
Vol 28 (3) ◽  
pp. 998-1015 ◽  
Author(s):  
Yoo-Geun Ham ◽  
Jong-Seong Kug

Abstract In this study, a new methodology is developed to improve the climate simulation of state-of-the-art coupled global climate models (GCMs), by a postprocessing based on the intermodel diversity. Based on the close connection between the interannual variability and climatological states, the distinctive relation between the intermodel diversity of the interannual variability and that of the basic state is found. Based on this relation, the simulated interannual variabilities can be improved, by correcting their climatological bias. To test this methodology, the dominant intermodel difference in precipitation responses during El Niño–Southern Oscillation (ENSO) is investigated, and its relationship with climatological state. It is found that the dominant intermodel diversity of the ENSO precipitation in phase 5 of the Coupled Model Intercomparison Project (CMIP5) is associated with the zonal shift of the positive precipitation center during El Niño. This dominant intermodel difference is significantly correlated with the basic states. The models with wetter (dryer) climatology than the climatology of the multimodel ensemble (MME) over the central Pacific tend to shift positive ENSO precipitation anomalies to the east (west). Based on the model’s systematic errors in atmospheric ENSO response and bias, the models with better climatological state tend to simulate more realistic atmospheric ENSO responses. Therefore, the statistical method to correct the ENSO response mostly improves the ENSO response. After the statistical correction, simulating quality of the MME ENSO precipitation is distinctively improved. These results provide a possibility that the present methodology can be also applied to improving climate projection and seasonal climate prediction.


2021 ◽  
pp. 1-56
Author(s):  
Qiu Yang ◽  
Andrew J. Majda ◽  
Nan Chen

AbstractThe El Niño-Southern Oscillation (ENSO) diversity has a significant impact on global climate and seasonal prediction. However, it is still a challenging problem for present-day global climate models to simulate different types of ENSO events with realistic features simultaneously. In this paper, a tropical stochastic skeleton model for the interactions among wind bursts and the Madden-Julian Oscillation (MJO), the El Niño, and the Walker circulation is developed to reproduce both dynamical and statistical features of the ENSO diversity. In this model, the intraseasonal component with state-dependent noise captures general features of wind bursts and the MJO, both of which play important roles in triggering the El Niño. The thermocline feedback is the dominant mechanism for generating the eastern Pacific (EP) El Niño, while a nonlinear zonal advection is incorporated into the model that contributes to the central Pacific (CP) El Niño. Besides, a simple but effective stochastic process describing the multidecadal variation of the background Walker circulation modulates the spatial patterns and occurrence frequency of the EP and CP El Niño. This model succeeds in simulating the quasi-regular moderate EP El Niño, the super El Niño, and the CP El Niño as well as the La Niña simultaneously. It also captures the observed non-Gaussian characteristics of sea surface temperature anomalies in different Niño regions. Individual case studies highlight the outstanding skill of the model in reproducing the observed El Niño episodes and their underlying mechanisms.


2016 ◽  
Vol 29 (5) ◽  
pp. 1919-1934 ◽  
Author(s):  
Xiong Chen ◽  
Jian Ling ◽  
Chongyin Li

Abstract Evolution characteristics of the Madden–Julian oscillation (MJO) during the eastern Pacific (EP) and central Pacific (CP) types of El Niño have been investigated. MJO activities are strengthened over the western Pacific during the predeveloping and developing phases of EP El Niño, but suppressed during the mature and decaying phases. In contrast, MJO activities do not show a clear relationship with CP El Niño before their occurrence over the western Pacific, but they increase over the central Pacific during the mature and decaying phases of CP El Niño. Lag correlation analyses further confirm that MJO activities over the western Pacific in boreal spring and early summer are closely related to EP El Niño up to 2–11 months later, but not for CP El Niño. EP El Niño tends to weaken the MJO and lead to a much shorter range of its eastward propagation. Anomalous descending motions over the Maritime Continent and western Pacific related to El Niño can suppress convection and moisture flux convergence there and weaken MJO activities over these regions during the mature phase of both types of El Niño. MJO activities over the western Pacific are much weaker in EP El Niño due to the stronger anomalous descending motions. Furthermore, the MJO propagates more continuously and farther eastward during CP El Niño because of robust moisture convergence over the central Pacific, which provides adequate moisture for the development of MJO convection.


2017 ◽  
Vol 30 (3) ◽  
pp. 849-864 ◽  
Author(s):  
Kang Xu ◽  
Chi-Yung Tam ◽  
Congwen Zhu ◽  
Boqi Liu ◽  
Weiqiang Wang

Abstract Future projections of the eastern-Pacific (EP) and central-Pacific (CP) types of El Niño in the twenty-first century, as well as their associated tropical circulation and precipitation variability, are investigated using historical runs and representative concentration pathway 8.5 (RCP8.5) simulations from 31 coupled models in phase 5 of the Coupled Model Intercomparison Project (CMIP5). As inferred from CMIP5 models that best capture both El Niño flavors, EP El Niño sea surface temperature (SST) variability will become weaker in the future climate, while no robust change of CP El Niño SST is found. Models also reach no consensus on the future change of relative frequency from CP to EP El Niño. However, there are robust changes in the tropical overturning circulation and precipitation associated with both types of El Niño. Under a warmer climate, magnitudes of precipitation anomalies during EP El Niño are projected to increase, presenting significant enhancement of the dry (wet) signal over the western (central–eastern) Pacific. This is consistent with an accelerated hydrological cycle in the deep tropics; hence, a “wet get wetter” picture appears under global warming, accompanied by a weakened anomalous Walker circulation. For CP El Niño, drier-than-normal conditions will be intensified over the tropical central–eastern Pacific in the future climate, with stronger anomalous sinking related to the strengthened North Pacific local Hadley cell. These results suggest that, besides the enhanced basic-state hydrological cycle over the tropics, other elements, such as the anomalous overturning circulation, might also play a role in determining the ENSO precipitation response to a warmer background climate.


2012 ◽  
Vol 140 (11) ◽  
pp. 3669-3681 ◽  
Author(s):  
Daria Gushchina ◽  
Boris Dewitte

ABSTRACT The characteristics of intraseasonal tropical variability (ITV) associated with the two flavors of El Niño [i.e., the canonical or eastern Pacific (EP) El Niño and the Modoki or central Pacific (CP) El Niño] are documented using composite and regression analysis. Double space–time Fourier analysis is applied to the NCEP–NCAR zonal wind at 850 hPa (U850) to separate the different components of the ITV in the tropical troposphere, which is then used to define indices of wave activity, and document the spatial pattern of the waves. It is shown that the ITV characteristics are altered during CP El Niño compared to the typical seasonal dependence of the ITV–ENSO relationship. In particular, while EP El Niño is characterized by enhanced MJO and equatorial Rossby (ER) wave activity during spring–summer prior to the ENSO peak, during CP El Niño, the ITV activity is increased during the mature and decaying phases. It is suggested that ITV is more propitious to the triggering of the EP event; while during the CP event, it contributes mostly to the persistence of positive SST anomalies. The oceanic response of these ITV anomalous patterns is further investigated in the Simple Ocean Data Assimilation (SODA) reanalysis by documenting the seasonal evolution of the intraseasonal equatorial oceanic Kelvin wave (IEKW) activity during the two flavors of El Niño. It is shown that anomalous westerlies associated with ITV may generate the corresponding response in the ocean in the form of anomalous IEKW activity.


2019 ◽  
Vol 4 (1) ◽  
pp. 15
Author(s):  
Budi Prasetyo ◽  
Nikita Pusparini ◽  
Ivonne Milichristi Radjawanne

<strong>Vertical Profile of Banda Sea Temperature Related to El Niño Events in the East Pacific and Central Pacific</strong>.Eastern Pacific (EP) and Central Pacific El Niño have different characteristics such as mechanism, evolution, impact to Sea Surface Temperature (SST), and rainfall. The character of two types of El Nino affect the temperature of the sea, on the near-surface as well as in deeper layer, in other regions including Banda Sea. This study is aimed to understand the response of Banda Sea vertical sea temperature profile to both El Niño types using sea temperature data from Simple Ocean Data Assimilation (SODA) v.2.2.4 from January 1950 until December 2010 (60 years), Oceanic Nino Index (ONI), and mixed layer depth (MLD) from SODA3. Eastern Pacific El Niño and CP El Niño cooled Banda Sea about -1.5°C and 0.9°C, respectively. The maximum cooling due to both El Niño occurred in the thermocline layer (at the depth of 90 to 120m). The maximum temperature decrease during EP El Niño occurred at the depth of 90 to 120 m, while during CP El Niño the maximum temperature decrease was at 140 to 160 m and 160 to 200m in western and eastern Banda Sea, respectively. The temperature of the near-surface layer responded rapidly to CP El Niño while in the deep layer the temperature responded more to EP El Niño. The Banda deep sea layer was cooling after both types of El Niño extinct while the temperature of near-surface layer was increasing when CP El Niño extinct.


2013 ◽  
Vol 26 (2) ◽  
pp. 361-379 ◽  
Author(s):  
Pei-Hsuan Chung ◽  
Tim Li

Abstract The interdecadal change of the mean state and two types of El Niño was investigated based on the analysis of observational data from 1980 to 2010. It was found that easterly trades and sea surface temperature (SST) gradients across the equatorial Pacific undergo a regime change in 1998/99, with enhanced trades and a significant cooling (warming) over tropical eastern (western) Pacific in the later period. Accompanying this mean state change is more frequent occurrence of central Pacific (CP) El Niño during 1999–2010. The diagnosis of air–sea feedback strength showed that atmospheric precipitation and wind responses to CP El Niño are greater than those to the eastern Pacific (EP) El Niño for given a unit SST anomaly (SSTA) forcing. The oceanic response to the same wind forcing, however, is greater in the EP El Niño than in the CP El Niño. A mixed layer heat budget analysis reveals that zonal advection (thermocline change induced vertical advection) primarily contributes to the CP (EP) El Niño growth. The role of the mean SST zonal gradient in El Niño selection was investigated through idealized numerical experiments. With the increase of the background zonal SST gradient, the anomalous wind and convection response to a specified EP or CP SSTA shift to the west. Such a difference results in a bifurcation of maximum SSTA tendency, as shown from a simple ocean model. The numerical results support the notion that a shift to the La Niño–like interdecadal mean state is responsible for more frequent occurrence of CP-type El Niño.


2017 ◽  
Vol 30 (4) ◽  
pp. 1397-1415 ◽  
Author(s):  
Pang-Chi Hsu ◽  
Ting Xiao

Abstract The influences of different types of Pacific warming, often classified as the eastern Pacific (EP) and central Pacific (CP) El Niño events, on Madden–Julian oscillation (MJO) activity over the Indian Ocean were investigated. Accompanied by relatively unstable (stable) atmospheric stratification induced by enhanced (reduced) moisture and moist static energy (MSE) in the lower troposphere, strengthened (weakened) MJO convection was observed in the initiation and eastward-propagation stages during CP (EP) El Niño events. To examine the key processes resulting in the differences in low-level moistening and column MSE anomalies over the Indian Ocean associated with the two types of El Niño, the moisture and column MSE budget equations were diagnosed using the reanalysis dataset ERA-Interim. The results indicate that the enhanced horizontal advection in the CP El Niño years plays an important role in causing a larger moisture and MSE growth rate over the MJO initiation area during CP El Niño events than during EP El Niño events. The increases in horizontal moisture and MSE advection primarily result from advection by mean flow across the enhanced intraseasonal moisture and MSE gradient, as well as by intraseasonal circulation across the mean moisture and MSE gradient associated with the CP El Niño. In the eastward development stage, the enhanced preconditioning comes from positive moisture and MSE advection anomalies in the CP El Niño events. Meanwhile, the strengthened MJO-related convection over the central-eastern Indian Ocean is maintained by increased atmospheric radiative heating and surface latent heat flux during the CP El Niño compared to the EP El Niño events.


2016 ◽  
Vol 73 (10) ◽  
pp. 4203-4214 ◽  
Author(s):  
Sebastian Schemm ◽  
Laura M. Ciasto ◽  
Camille Li ◽  
Nils Gunnar Kvamstø

Abstract This study investigates the relationship between tropical Pacific sea surface temperature (SST) variability and cyclogenesis over the Gulf Stream region of the North Atlantic. A cyclone identification scheme and Lagrangian trajectories are used to compare preferred cyclogenesis locations and precyclogenesis flow paths associated with three patterns of tropical Pacific SST variability: eastern Pacific (EP) El Niño, central Pacific (CP) El Niño, and La Niña. During EP El Niño and La Niña winters, the upper-level precyclogenesis flow takes a subtropical path over North America and Gulf Stream cyclogenesis predominantly occurs under the North Atlantic jet entrance, which is the climatologically preferred location. In contrast, during CP El Niño winters, when the warmest SST anomalies occur in the central tropical Pacific, the precyclogenesis flow takes a northern path across North America and Gulf Stream cyclogenesis tends to occur farther north under the jet exit. The shift in preferred cyclogenesis is consistent with changes in transient upstream flow perturbations, detected using potential vorticity (PV) streamer frequencies, which are associated with the stationary wave response. Compared to EP El Niño winters, CP El Niño winters exhibit fewer southward-extending streamers and cyclonic (LC2) flow behavior, resulting in precyclogenesis air bypassing the right entrance of the North Atlantic jet. Downstream, Gulf Stream cyclones penetrate deeper into high Arctic latitudes during CP El Niño winters than in other cases. The results highlight distinct signatures of tropical SST anomalies on synoptic-scale atmospheric features and could help constrain future changes in the North Atlantic storm track and the associated poleward heat transport.


Sign in / Sign up

Export Citation Format

Share Document