scholarly journals Inability of CMIP5 Models to Simulate Recent Strengthening of the Walker Circulation: Implications for Projections

2014 ◽  
Vol 28 (1) ◽  
pp. 20-35 ◽  
Author(s):  
Greg Kociuba ◽  
Scott B. Power

Abstract This paper examines changes in the strength of the Walker circulation (WC) using the pressure difference between the western and eastern equatorial Pacific. Changes in observations and in 35 climate models from the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) are determined. On the one hand, 78% of the models show a weakening of the WC over the twentieth century, consistent with the observations and previous studies using CMIP phase 3 (CMIP3) models. However, the observations also exhibit a strengthening in the last three decades (i.e., from 1980 to 2012) that is statistically significant at the 95% level. The models, on the other hand, show no consensus on the sign of change, and none of the models shows a statistically significant strengthening over the same period. While the reasons for the inconsistency between models and observations is not fully understood, it is shown that the ability of the models to generate trends as large as the observed from internal variability is reduced because most models have weaker than observed levels of both multidecadal variability and persistence of interannual variability in WC strength. In the twenty-first-century future projections, the WC weakens in 25 out of 35 models, under representative concentration pathway (RCP) 8.5, 9 out of 11 models under RCP6.0, 16 out of 18 models under RCP4.5, and 12 out of 15 models under RCP2.6. The projected decrease is also consistent with results obtained previously using models from CMIP3. However, as the reasons for the inconsistency between modeled and observed trends in the last three decades are not fully understood, confidence in the model projections is reduced.

2020 ◽  
Vol 20 (16) ◽  
pp. 9591-9618 ◽  
Author(s):  
Christopher J. Smith ◽  
Ryan J. Kramer ◽  
Gunnar Myhre ◽  
Kari Alterskjær ◽  
William Collins ◽  
...  

Abstract. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m−2, comprised of 1.81 (±0.09) W m−2 from CO2, 1.08 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.01 (± 0.23) W m−2 from aerosols and −0.09 (±0.13) W m−2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.21 W m−2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.


2013 ◽  
Vol 26 (12) ◽  
pp. 4038-4048 ◽  
Author(s):  
Pedro N. DiNezio ◽  
Gabriel A. Vecchi ◽  
Amy C. Clement

Abstract Changes in the gradients in sea level pressure (SLP) and sea surface temperature (SST) along the equatorial Pacific are analyzed in observations and 101 numerical experiments performed with 37 climate models participating in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The ensemble of numerical experiments simulates changes in the earth’s climate during the 1870–2004 period in response to changes in natural (solar variations and volcanoes) and anthropogenic (well-mixed greenhouse gases, ozone, direct aerosol forcing, and land use) radiative forcings. A reduction in the zonal SLP gradient is present in observational records and is the typical response of the ensemble, yet only 26 out of the 101 experiments exhibit a reduced SLP gradient within 95% statistical confidence of the observed value. The multimodel response indicates a reduction of the Walker circulation to historical forcings, albeit an order of magnitude smaller than the observed value. There are multiple nonexclusive interpretations of these results: (i) the observed trend may not be entirely forced and includes a substantial component from internal variability; (ii) there are problems with the observational record that lead to a spuriously large trend; and (iii) the strength of the Walker circulation, as measured by the zonal SLP gradient, may be less sensitive to external forcing in models than in the real climate system. Analysis of a subset of experiments suggests that greenhouse gases act to weaken the circulation, but aerosol forcing drives a strengthening of the circulation, which appears to be overestimated by the models, resulting in a muted response to the combined anthropogenic forcings.


2013 ◽  
Vol 26 (21) ◽  
pp. 8597-8615 ◽  
Author(s):  
Alexander Sen Gupta ◽  
Nicolas C. Jourdain ◽  
Jaclyn N. Brown ◽  
Didier Monselesan

Abstract Climate models often exhibit spurious long-term changes independent of either internal variability or changes to external forcing. Such changes, referred to as model “drift,” may distort the estimate of forced change in transient climate simulations. The importance of drift is examined in comparison to historical trends over recent decades in the Coupled Model Intercomparison Project (CMIP). Comparison based on a selection of metrics suggests a significant overall reduction in the magnitude of drift from phase 3 of CMIP (CMIP3) to phase 5 of CMIP (CMIP5). The direction of both ocean and atmospheric drift is systematically biased in some models introducing statistically significant drift in globally averaged metrics. Nevertheless, for most models globally averaged drift remains weak compared to the associated forced trends and is often smaller than the difference between trends derived from different ensemble members or the error introduced by the aliasing of natural variability. An exception to this is metrics that include the deep ocean (e.g., steric sea level) where drift can dominate in forced simulations. In such circumstances drift must be corrected for using information from concurrent control experiments. Many CMIP5 models now include ocean biogeochemistry. Like physical models, biogeochemical models generally undergo long spinup integrations to minimize drift. Nevertheless, based on a limited subset of models, it is found that drift is an important consideration and must be accounted for. For properties or regions where drift is important, the drift correction method must be carefully considered. The use of a drift estimate based on the full control time series is recommended to minimize the contamination of the drift estimate by internal variability.


2020 ◽  
Author(s):  
Baijun Tian

<p>The double-Intertropical Convergence Zone (ITCZ) bias is one of the most outstanding problems in climate models. This study seeks to examine the double-ITCZ bias in the latest state-of-the-art fully coupled global climate models that participated in Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6) in comparison to their previous generations (CMIP3 and CMIP5 models). To that end, we have analyzed the long-term annual mean tropical precipitation distributions and several precipitation bias indices that quantify the double-ITCZ biases in 75 climate models including 24 CMIP3 models, 25 CMIP3 models, and 26 CMIP6 models. We find that the double-ITCZ bias and its big inter-model spread persist in CMIP6 models but the double-ITCZ bias is slightly reduced from CMIP3 or CMIP5 models to CMIP6 models.</p>


2020 ◽  
Author(s):  
Zebedee R. J. Nicholls ◽  
Malte Meinshausen ◽  
Jared Lewis ◽  
Robert Gieseke ◽  
Dietmar Dommenget ◽  
...  

Abstract. Here we present results from the first phase of the Reduced Complexity Model Intercomparison Project (RCMIP). RCMIP is a systematic examination of reduced complexity climate models (RCMs), which are used to complement and extend the insights from more complex Earth System Models (ESMs), in particular those participating in the Sixth Coupled Model Intercomparison Project (CMIP6). In Phase 1 of RCMIP, with 14 participating models namely ACC2, AR5IR (2 and 3 box versions), CICERO-SCM, ESCIMO, FaIR, GIR, GREB, Hector, Held et al. two layer model, MAGICC, MCE, OSCAR and WASP, we highlight the structural differences across various RCMs and show that RCMs are capable of reproducing global-mean surface air temperature (GSAT) changes of ESMs and historical observations. We find that some RCMs are capable of emulating the GSAT response of CMIP6 models to within a root-mean square error of 0.2 °C (of the same order of magnitude as ESM internal variability) over a range of scenarios. Running the same model configurations for both RCP and SSP scenarios, we see that the SSPs exhibit higher effective radiative forcing throughout the second half of the 21st Century. Comparing our results to the difference between CMIP5 and CMIP6 output, we find that the change in scenario explains approximately 46 % of the increase in higher end projected warming between CMIP5 and CMIP6. This suggests that changes in ESMs from CMIP5 to CMIP6 explain the rest of the increase, hence the higher climate sensitivities of available CMIP6 models may not be having as large an impact on GSAT projections as first anticipated. A second phase of RCMIP will complement RCMIP Phase 1 by exploring probabilistic results and emulation in more depth to provide results available for the IPCC's Sixth Assessment Report author teams.


2020 ◽  
Author(s):  
Clare Marie Flynn ◽  
Thorsten Mauritsen

Abstract. The Earth's equilibrium climate sensitivity (ECS) to a doubling of atmospheric CO2, along with the transient 35 climate response (TCR) and greenhouse gas emissions pathways, determines the amount of future warming. Coupled climate models have in the past been important tools to estimate and understand ECS. ECS estimated from Coupled Model Intercomparison Project Phase 5 (CMIP5) models lies between 2.0 and 4.7 K (mean of 3.2 K), whereas in the latest CMIP6 the spread has increased: 1.8–5.5 K (mean of 3.7 K), with 5 out of 25 models exceeding 5 K. It is thus pertinent to understand the causes underlying this shift. Here we compare the CMIP5 and CMIP6 model ensembles, and find a systematic shift between CMIP eras to be unexplained as a process of random sampling from modeled forcing and feedback distributions. Instead, shortwave feedbacks shift towards more positive values, in particular over the Southern Ocean, driving the shift towards larger ECS values in many of the models. These results suggest that changes in model treatment of mixed-phase cloud processes and changes to Antarctic sea ice representation are likely causes of the shift towards larger ECS. Somewhat surprisingly, CMIP6 models exhibit less historical warming than CMIP5 models; the evolution of the warming suggests, however, that several of the models apply too strong aerosol cooling resulting in too weak mid 20th Century warming compared to the instrumental record.


2021 ◽  
Author(s):  
Tristan Perotin

<p>Winter windstorms are one of the major natural hazards affecting Europe, potentially causing large damages. The study of windstorm risks is therefore particularly important for the insurance industry. Physical natural catastrophe models for the insurance industry appeared in the 1980s and enable a fine analysis of the risk by taking into account all of its components (hazard, vulnerability and exposure). One main aspect of this catastrophe modeling is the production and validation of extreme hazard scenarios. As observational weather data is very sparse before the 1980s, estimates of extreme windstorm risks are usually based on climate models, despite the limited resolution of these models. Even though this limitation can be partially corrected by statistical or dynamical downscaling and calibration techniques, new generations of climate models can bring new understanding of windstorm risks.</p><p>In that context, PRIMAVERA, a European Union Horizon2020 project, made available a windstorm event set based on 21 tier 1 (1950-2014) highresSST-present simulations of the High Resolution Model Intercomparison Project (HighResMIP) component of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The events were identified with a storm tracking algorithm, footprints were defined for each event as maximum gusts over a 72 hour period, and the footprints were re-gridded to the ERA5 grid and calibrated with a quantile mapping correction method. The native resolution of these simulations ranges from 150km (typical resolution of the CMIP5 models) to 25km.</p><p>We have studied the applicability of the PRIMAVERA European windstorm event set for the modeling of European windstorm risks for the insurance sector. Preliminary results show that losses simulated from the event set appear to be consistent with historical data for all of the included simulations. The event set enables a better representation of attritional events and storm clustering than other existing event sets. An alternative calibration technique for extreme gusts and potential future developments of the event set will be proposed.</p>


2017 ◽  
Vol 30 (14) ◽  
pp. 5529-5546 ◽  
Author(s):  
Junsu Kim ◽  
Seok-Woo Son ◽  
Edwin P. Gerber ◽  
Hyo-Seok Park

A sudden stratospheric warming (SSW) is often defined as zonal-mean zonal wind reversal at 10 hPa and 60°N. This simple definition has been applied not only to the reanalysis data but also to climate model output. In the present study, it is shown that the application of this definition to models can be significantly influenced by model mean biases (i.e., more frequent SSWs appear to occur in models with a weaker climatological polar vortex). To overcome this deficiency, a tendency-based definition is proposed and applied to the multimodel datasets archived for phase 5 of the Coupled Model Intercomparison Project (CMIP5). In this definition, SSW-like events are defined by sufficiently strong vortex deceleration. This approach removes a linear relationship between SSW frequency and intensity of the climatological polar vortex in the CMIP5 models. The models’ SSW frequency instead becomes significantly correlated with the climatological upward wave flux at 100 hPa, a measure of interaction between the troposphere and stratosphere. Lower stratospheric wave activity and downward propagation of stratospheric anomalies to the troposphere are also reasonably well captured. However, in both definitions, the high-top models generally exhibit more frequent SSWs than the low-top models. Moreover, a hint of more frequent SSWs in a warm climate is found in both definitions.


2020 ◽  
Vol 55 (11-12) ◽  
pp. 2993-3016
Author(s):  
María Santolaria-Otín ◽  
Olga Zolina

Abstract Spatial and temporal patterns of snow cover extent (SCE) and snow water equivalent (SWE) over the terrestrial Arctic are analyzed based on multiple observational datasets and an ensemble of CMIP5 models during 1979–2005. For evaluation of historical simulations of the Coupled Model Intercomparison Project (CMIP5) ensemble, we used two reanalysis products, one satellite-observed product and an ensemble of different datasets. The CMIP5 models tend to significantly underestimate the observed SCE in spring but are in better agreement with observations in autumn; overall, the observed annual SCE cycle is well captured by the CMIP5 ensemble. In contrast, for SWE, the annual cycle is significantly biased, especially over North America, where some models retain snow even in summer, in disagreement with observations. The snow margin position (SMP) in the CMIP5 historical simulations is in better agreement with observations in spring than in autumn, when close agreement across the CMIP5 models is only found in central Siberia. Historical experiments from most CMIP5 models show negative pan-Arctic trends in SCE and SWE. These trends are, however, considerably weaker (and less statistically significant) than those reported from observations. Most CMIP5 models can more accurately capture the trend pattern of SCE than that of SWE, which shows quantitative and qualitative differences with the observed trends over Eurasia. Our results demonstrate the importance of using multiple data sources for the evaluation of snow characteristics in climate models. Further developments should focus on the improvement of both dataset quality and snow representation in climate models, especially ESM-SnowMIP.


2017 ◽  
Vol 30 (23) ◽  
pp. 9773-9782 ◽  
Author(s):  
Anson H. Cheung ◽  
Michael E. Mann ◽  
Byron A. Steinman ◽  
Leela M. Frankcombe ◽  
Matthew H. England ◽  
...  

In a comment on a 2017 paper by Cheung et al., Kravtsov states that the results of Cheung et al. are invalidated by errors in the method used to estimate internal variability in historical surface temperatures, which involves using the ensemble mean of simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to estimate the forced signal. Kravtsov claims that differences between the forced signals in the individual models and as defined by the multimodel ensemble mean lead to errors in the assessment of internal variability in both model simulations and the instrumental record. Kravtsov proposes a different method, which instead uses CMIP5 models with at least four realizations to define the forced component. Here, it is shown that the conclusions of Cheung et al. are valid regardless of whether the method of Cheung et al. or that of Kravtsov is applied. Furthermore, many of the points raised by Kravtsov are discussed in Cheung et al., and the disagreements of Kravtsov appear to be mainly due to a misunderstanding of the aims of Cheung et al.


Sign in / Sign up

Export Citation Format

Share Document