The Multidecadal Variability of the Asymmetric Mode of the Boreal Autumn Hadley Circulation and Its Link to the Atlantic Multidecadal Oscillation

2016 ◽  
Vol 29 (15) ◽  
pp. 5625-5641 ◽  
Author(s):  
Yipeng Guo ◽  
Jianping Li ◽  
Juan Feng ◽  
Fei Xie ◽  
Cheng Sun ◽  
...  

Abstract Previous studies show that the first principal mode of the variability of the seasonal mean Hadley circulation (HC) is an equatorial asymmetric mode (AM) with long-term trend. This study demonstrates that the variability of the boreal autumn [September–November (SON)] HC is also dominated by an AM, but with multidecadal variability. The SON AM has ascending and descending branches located at approximately 20°N and 20°S, respectively, and explains about 40% of the total variance. Further analysis reveals that the AM is closely linked to the Atlantic multidecadal oscillation (AMO), which is associated with a large cross-equatorial sea surface temperature (SST) gradient and sea level pressure (SLP) gradient. The cross-equatorial thermal contrast further induces an equatorial asymmetric HC anomaly. Numerical simulations conducted on an atmospheric general circulation model also suggest that AMO-associated SST anomalies can also induce a cross-equatorial SLP gradient and anomalous vertical shear of the meridional wind at the equator, both of which indicate asymmetric HC anomaly. Therefore, the AM of the variability of the boreal autumn HC has close links to the AMO. Further analysis demonstrates that the AMO in SON has a closer relationship with AM than those in the other seasons. A possible reason is that the AMO-associated zonal mean SST anomaly in the tropics has differences among the four seasons, which leads to different atmospheric circulation responses. The AM in SON has inversed impacts on the tropical precipitation, suggesting that the precipitation difference between the northern and southern tropics has multidecadal variability.

2018 ◽  
Vol 31 (23) ◽  
pp. 9753-9770 ◽  
Author(s):  
Casey C. Hilgenbrink ◽  
Dennis L. Hartmann

Deeper theoretical understanding of Hadley circulation (HC) width and the mechanisms leading to HC expansion is gained by exploring the response of a zonally symmetric slab ocean aquaplanet general circulation model (GCM) to imposed poleward ocean heat transport (OHT). Poleward OHT causes the subtropical edge of the HC to shift poleward by up to 3° compared to its position in simulations without OHT. This HC widening is interpreted as being driven by a decrease in baroclinicity near the poleward edge of the HC and is divided into three components: a decrease in baroclinicity due to 1) a systematic poleward shift of the intertropical convergence zone (ITCZ) during the seasonal cycle that drives a decrease in the angular momentum of the HC and, consequently, a weakening of the vertical shear of the zonal wind; 2) an increase in subtropical static stability and the vertical extent of the HC, both of which result from OHT’s effect on global-mean temperature; and 3) a relaxation of the meridional sea surface temperature (SST) gradient in the outer tropics and subtropics by OHT. Although the third mechanism contributes the most to the response of HC width to OHT, the contributions from the first two mechanisms each account for up to 20%–30% of the HC response. This work highlights the role of ITCZ position in producing HC expansion and in setting the climatological width of the HC, a role which has been underappreciated. This study indicates a fundamental role for baroclinicity in limiting the poleward extent of the HC.


2009 ◽  
Vol 22 (10) ◽  
pp. 2639-2658 ◽  
Author(s):  
Grant Branstator ◽  
Frank Selten

Abstract A 62-member ensemble of coupled general circulation model (GCM) simulations of the years 1940–2080, including the effects of projected greenhouse gas increases, is examined. The focus is on the interplay between the trend in the Northern Hemisphere December–February (DJF) mean state and the intrinsic modes of variability of the model atmosphere as given by the upper-tropospheric meridional wind. The structure of the leading modes and the trend are similar. Two commonly proposed explanations for this similarity are considered. Several results suggest that this similarity in most respects is consistent with an explanation involving patterns that result from the model dynamics being well approximated by a linear system. Specifically, the leading intrinsic modes are similar to the leading modes of a stochastic model linearized about the mean state of the GCM atmosphere, trends in GCM tropical precipitation appear to excite the leading linear pattern, and the probability density functions (PDFs) of prominent circulation patterns are quasi-Gaussian. There are, on the other hand, some subtle indications that an explanation for the similarity involving preferred states (which necessarily result from nonlinear influences) has some relevance. For example, though unimodal, PDFs of prominent patterns have departures from Gaussianity that are suggestive of a mixture of two Gaussian components. And there is some evidence of a shift in probability between the two components as the climate changes. Interestingly, contrary to the most prominent theory of the influence of nonlinearly produced preferred states on climate change, the centroids of the components also change as the climate changes. This modification of the system’s preferred states corresponds to a change in the structure of its dominant patterns. The change in pattern structure is reproduced by the linear stochastic model when its basic state is modified to correspond to the trend in the general circulation model’s mean atmospheric state. Thus, there is a two-way interaction between the trend and the modes of variability.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 195
Author(s):  
Hua Chen ◽  
Zhenchen Xu

Based on the centennial-scale observations and CMIP6 historical simulations, this paper employs the ensemble empirical mode decomposition to extract the decadal-to-multidecadal variability of land precipitation (DMVLP) in the northern hemisphere. The spatial distributions of the dominant mode from the empirical orthogonal function are different in four seasons. Regions with the same sign of precipitation anomalies are likely to be teleconnected through oceanic forcing. The temporal evolutions of the leading modes are similar in winter and spring, with an amplitude increasing after the late 1970s, probably related to the overlap of oceanic multidecadal signals. In winter and spring, the Interdecadal Pacific Oscillation (IPO) and the Atlantic Multidecadal Oscillation (AMO) play a joint role. They were in phase before late 1970s and out of phase after then, weakening/strengthening the impacts of the North Pacific and North Atlantic on the DMVLP before/after late 1970s. In summer and autumn, AMO alone plays a part and the amplitude of time series does not vary as in winter and spring. The ability of the coupled models from CMIP6 historical simulations is also evaluated. The good-models average largely captures the spatial structure in four seasons and the associated oceanic signals. The poor-models average is hardly or weakly correlated with observation.


2019 ◽  
Vol 76 (6) ◽  
pp. 1547-1564 ◽  
Author(s):  
Spencer A. Hill ◽  
Simona Bordoni ◽  
Jonathan L. Mitchell

Abstract We consider the relevance of known constraints from each of Hide’s theorem, the angular momentum–conserving (AMC) model, and the equal-area model on the extent of cross-equatorial Hadley cells. These theories respectively posit that a Hadley circulation must span all latitudes where the radiative–convective equilibrium (RCE) absolute angular momentum satisfies or or where the RCE absolute vorticity satisfies ; all latitudes where the RCE zonal wind exceeds the AMC zonal wind; and over a range such that depth-averaged potential temperature is continuous and that energy is conserved. The AMC model requires knowledge of the ascent latitude , which needs not equal the RCE forcing maximum latitude . Whatever the value of , we demonstrate that an AMC cell must extend at least as far into the winter hemisphere as the summer hemisphere. The equal-area model predicts , always placing it poleward of . As is moved poleward (at a given thermal Rossby number), the equal-area-predicted Hadley circulation becomes implausibly large, while both and become increasingly displaced poleward of the minimal cell extent based on Hide’s theorem (i.e., of supercritical forcing). In an idealized dry general circulation model, cross-equatorial Hadley cells are generated, some spanning nearly pole to pole. All homogenize angular momentum imperfectly, are roughly symmetric in extent about the equator, and appear in extent controlled by the span of supercritical forcing.


2017 ◽  
Vol 30 (10) ◽  
pp. 3743-3769 ◽  
Author(s):  
Lu Wang ◽  
Tim Li ◽  
Eric Maloney ◽  
Bin Wang

Abstract This study investigates the fundamental causes of differences in the Madden–Julian oscillation (MJO) eastward propagation among models that participated in a recent model intercomparison project. These models are categorized into good and poor groups characterized by prominent eastward propagation and nonpropagation, respectively. Column-integrated moist static energy (MSE) budgets are diagnosed for the good and the poor models. It is found that a zonal asymmetry in the MSE tendency, characteristic of eastward MJO propagation, occurs in the good group, whereas such an asymmetry does not exist in the poor group. The difference arises mainly from anomalous vertical and horizontal MSE advection. The former is attributed to the zonal asymmetry of upper-midtropospheric vertical velocity anomalies acting on background MSE vertical gradient; the latter is mainly attributed to the asymmetric zonal distribution of low-tropospheric meridional wind anomalies advecting background MSE and moisture fields. Based on the diagnosis above, a new mechanism for MJO eastward propagation that emphasizes the second-baroclinic-mode vertical velocity is proposed. A set of atmospheric general circulation model experiments with prescribed diabatic heating profiles was conducted to investigate the causes of different anomalous circulations between the good and the poor models. The numerical experiments reveal that the presence of a stratiform heating at the rear of MJO convection is responsible for the zonal asymmetry of vertical velocity anomaly and is important to strengthening lower-tropospheric poleward flows to the east of MJO convection. Thus, a key to improving the poor models is to correctly reproduce the stratiform heating. The roles of Rossby and Kelvin wave components in MJO propagation are particularly discussed.


2016 ◽  
Vol 29 (18) ◽  
pp. 6425-6444 ◽  
Author(s):  
Graham R. Simpkins ◽  
Yannick Peings ◽  
Gudrun Magnusdottir

Abstract Several recent studies have connected Antarctic climate variability to tropical Atlantic sea surface temperatures (SST), proposing a Rossby wave response from the Atlantic as the primary dynamical mechanism. In this investigation, reanalysis data and atmospheric general circulation model experiments are used to further diagnose these dynamical links. Focus is placed on the possible mediating role of Pacific processes, motivated by the similar spatial characteristics of Southern Hemisphere (SH) teleconnections associated with tropical Atlantic and Pacific SST variability. During austral winter (JJA), both reanalyses and model simulations reveal that Atlantic teleconnections represent a two-mechanism process, whereby increased tropical Atlantic SST promotes two conditions: 1) an intensification of the local Atlantic Hadley circulation (HC), driven by enhanced interaction between SST anomalies and the ITCZ, that increases convergence at the descending branch, establishing anomalous vorticity forcing from which a Rossby wave emanates, expressed as a pattern of alternating positive and negative geopotential height anomalies across the SH extratropics (the so-called HC-driven components); and 2) perturbations to the zonal Walker circulation (WC), driven primarily by an SST-induced amplification, that creates a pattern of anomalous upper-level convergence across the central/western Pacific, from which an ENSO-like Rossby wave train can be triggered (the so-called WC-driven components). While the former are found to dominate, the WC-driven components play a subsidiary yet important role. Indeed, it is the superposition of these two separate but interrelated mechanisms that gives the overall observed response. By demonstrating an additional Pacific-related component to Atlantic teleconnections, this study highlights the need to consider Atlantic–Pacific interactions when diagnosing tropical-related climate variability in the SH extratropics.


2008 ◽  
Vol 26 (3) ◽  
pp. 447-466 ◽  
Author(s):  
J. Meriwether ◽  
M. Faivre ◽  
C. Fesen ◽  
P. Sherwood ◽  
O. Veliz

Abstract. Optical observations of thermospheric winds and temperatures determined with high resolution measurements of Doppler shifts and Doppler widths of the OI 630-nm equatorial nightglow emission have been made with improved accuracy at Arequipa, Peru (16.4° S, 71.4° W) with an imaging Fabry-Perot interferometer. An observing procedure previously used at Arecibo Observatory was applied to achieve increased spatial and temporal sampling of the thermospheric wind and temperature with the selection of eight azimuthal directions, equally spaced from 0 to 360°, at a zenith angle of 60°. By assuming the equivalence of longitude and local time, the data obtained using this technique is analyzed to determine the mean neutral wind speeds and mean horizontal gradients of the wind field in the zonal and meridional directions. The new temperature measurements obtained with the improved instrumental accuracy clearly show the midnight temperature maximum (MTM) peak with amplitudes of 25 to 200 K in all directions observed for most nights. The horizontal wind field maps calculated from the mean winds and gradients show the MTM peak is always preceded by an equatorward wind surge lasting 1–2 h. The results also show for winter events a meridional wind abatement seen after the MTM peak. On one occasion, near the September equinox, a reversal was observed during the poleward transit of the MTM over Arequipa. Analysis inferring vertical winds from the observed convergence yielded inconsistent results, calling into question the validity of this calculation for the MTM structure at equatorial latitudes during solar minimum. Comparison of the observations with the predictions of the NCAR general circulation model indicates that the model fails to reproduce the observed amplitude by a factor of 5 or more. This is attributed in part to the lack of adequate spatial resolution in the model as the MTM phenomenon takes place within a scale of 300–500 km and ~45 min in local time. The model shortcoming is also attributed in part to the need for the model to include a hydrodynamical mechanism to describe the merging of the zonal wind with the meridional tidal winds that converge onto the geographical equator. Finally, a conclusion of this work is that the MTM compressional heating takes place along the perimeter of the pressure bulge rather than within the bulge, an issue previously not appreciated.


2016 ◽  
Vol 16 (8) ◽  
pp. 4885-4896 ◽  
Author(s):  
Sheng-Yang Gu ◽  
Han-Li Liu ◽  
Xiankang Dou ◽  
Tao Li

Abstract. The influence of the sudden stratospheric warming (SSW) on a quasi-2-day wave (QTDW) with westward zonal wave number 3 (W3) is investigated using the Thermosphere–Ionosphere–Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The summer easterly jet below 90 km is strengthened during an SSW, which results in a larger refractive index and thus more favorable conditions for the propagation of W3. In the winter hemisphere, the Eliassen–Palm (EP) flux diagnostics indicate that the strong instabilities at middle and high latitudes in the mesopause region are important for the amplification of W3, which is weakened during SSW periods due to the deceleration or even reversal of the winter westerly winds. Nonlinear interactions between the W3 and the wave number 1 stationary planetary wave produce QTDW with westward zonal wave number 2 (W2). The meridional wind perturbations of the W2 peak in the equatorial region, while the zonal wind and temperature components maximize at middle latitudes. The EP flux diagnostics indicate that the W2 is capable of propagating upward in both winter and summer hemispheres, whereas the propagation of W3 is mostly confined to the summer hemisphere. This characteristic is likely due to the fact that the phase speed of W2 is larger, and therefore its waveguide has a broader latitudinal extension. The larger phase speed also makes W2 less vulnerable to dissipation and critical layer filtering by the background wind when propagating upward.


2012 ◽  
Vol 25 (6) ◽  
pp. 1854-1870 ◽  
Author(s):  
Lise Seland Graff ◽  
J. H. LaCasce

Abstract A poleward shift in the extratropical storm tracks has been identified in observational and climate simulations. The authors examine the role of altered sea surface temperatures (SSTs) on the storm-track position and intensity in an atmospheric general circulation model (AGCM) using realistic lower boundary conditions. A set of experiments was conducted in which the SSTs where changed by 2 K in specified latitude bands. The primary profile was inspired by the observed trend in ocean temperatures, with the largest warming occurring at low latitudes. The response to several other heating patterns was also investigated, to examine the effect of imposed gradients and low- versus high-latitude heating. The focus is on the Northern Hemisphere (NH) winter, averaged over a 20-yr period. Results show that the storm tracks respond to changes in both the mean SST and SST gradients, consistent with previous studies employing aquaplanet (water only) boundary conditions. Increasing the mean SST strengthens the Hadley circulation and the subtropical jets, causing the storm tracks to intensify and shift poleward. Increasing the SST gradient at midlatitudes similarly causes an intensification and a poleward shift of the storm tracks. Increasing the gradient in the tropics, on the other hand, causes the Hadley cells to contract and the storm tracks to shift equatorward. Consistent shifts are seen in the mean zonal velocity, the atmospheric baroclinicity, the eddy heat and momentum fluxes, and the atmospheric meridional overturning circulation. The results support the idea that oceanic heating could be a contributing factor to the observed shift in the storm tracks.


2013 ◽  
Vol 4 (2) ◽  
pp. 927-965 ◽  
Author(s):  
A. Voigt

Abstract. I study the Hadley circulation of a completely ice-covered Snowball Earth through simulations with a comprehensive atmosphere general circulation model. Because the Snowball Earth atmosphere is an example of a dry atmosphere, these simulations allow me to test to what extent dry theories and idealized models capture the dynamics of dry Hadley circulations. Perpetual off-equatorial as well as seasonally-varying insolation is used, extending a previous study for perpetual on-equatorial (equinox) insolation. Vertical diffusion of momentum, representing the momentum transport of dry convection, is fundamental to the momentum budgets of both the winter and summer cells. In the zonal budget, it is the primary process balancing the Coriolis force. In the meridional budget, it mixes meridional momentum between the upper and the lower branch and thereby decelerates the circulation. Because of the latter, the circulation intensifies by a factor of three when vertical diffusion of momentum is suppressed. For seasonally-varying insolation, the circulation undergoes rapid transitions from the weak summer into the strong winter regime. Consistent with previous studies in idealized models, these transitions result from a mean-flow feedback, because of which they are insensitive to the treatment of vertical diffusion of momentum. Overall, the results corroborate previous findings for perpetual on-equatorial insolation. They demonstrate that an appropriate description of dry Hadley circulations, in particular their strength, needs to incorporate the vertical momentum transport by dry convection, a process that is neglected in most dry theories and idealized models. An improved estimate of the strength of the Snowball Earth Hadley circulation will also help to better constrain the climate of a possible Neoproterozoic Snowball Earth and its deglaciation threshold.


Sign in / Sign up

Export Citation Format

Share Document