scholarly journals A Mechanism of Internal Decadal Atlantic Ocean Variability in a High-Resolution Coupled Climate Model

2015 ◽  
Vol 28 (19) ◽  
pp. 7764-7785 ◽  
Author(s):  
Matthew B. Menary ◽  
Daniel L. R. Hodson ◽  
Jon I. Robson ◽  
Rowan T. Sutton ◽  
Richard A. Wood

Abstract The North Atlantic Ocean subpolar gyre (NA SPG) is an important region for initializing decadal climate forecasts. Climate model simulations and paleoclimate reconstructions have indicated that this region could also exhibit large, internally generated variability on decadal time scales. Understanding these modes of variability, their consistency across models, and the conditions in which they exist is clearly important for improving the skill of decadal predictions—particularly when these predictions are made with the same underlying climate models. This study describes and analyzes a mode of internal variability in the NA SPG in a state-of-the-art, high-resolution, coupled climate model. This mode has a period of 17 yr and explains 15%–30% of the annual variance in related ocean indices. It arises because of the advection of heat content anomalies around the NA SPG. Anomalous circulation drives the variability in the southern half of the NA SPG, while mean circulation and anomalous temperatures are important in the northern half. A negative feedback between Labrador Sea temperatures/densities and those in the North Atlantic Current (NAC) is identified, which allows for the phase reversal. The atmosphere is found to act as a positive feedback on this mode via the North Atlantic Oscillation (NAO), which itself exhibits a spectral peak at 17 yr. Decadal ocean density changes associated with this mode are driven by variations in temperature rather than salinity—a point which models often disagree on and which may affect the veracity of the underlying assumptions of anomaly-assimilating decadal prediction methodologies.

2018 ◽  
Vol 10 (8) ◽  
pp. 2026-2041 ◽  
Author(s):  
Dmitry V. Sein ◽  
Nikolay V. Koldunov ◽  
Sergey Danilov ◽  
Dmitry Sidorenko ◽  
Claudia Wekerle ◽  
...  

2018 ◽  
Vol 48 (10) ◽  
pp. 2283-2303 ◽  
Author(s):  
René Schubert ◽  
Arne Biastoch ◽  
Meghan F. Cronin ◽  
Richard J. Greatbatch

AbstractBenthic storms are important for both the energy budget of the ocean and for sediment resuspension and transport. Using 30 years of output from a high-resolution model of the North Atlantic, it is found that most of the benthic storms in the model occur near the western boundary in association with the Gulf Stream and the North Atlantic Current, in regions that are generally collocated with the peak near-bottom eddy kinetic energy. A common feature is meander troughs in the near-surface jets that are accompanied by deep low pressure anomalies spinning up deep cyclones with near-bottom velocities of up to more than 0.5 m s−1. A case study of one of these events shows the importance of both baroclinic and barotropic instability of the jet, with energy being extracted from the jet in the upstream part of the meander trough and partly returned to the jet in the downstream part of the meander trough. This motivates examining the 30-yr time mean of the energy transfer from the (annual mean) background flow into the eddy kinetic energy. This quantity is shown to be collocated well with the region in which benthic storms and large increases in deep cyclonic relative vorticity occur most frequently, suggesting an important role for mixed barotropic–baroclinic instability-driven cyclogenesis in generating benthic storms throughout the model simulation. Regions of the largest energy transfer and most frequent benthic storms are found to be the Gulf Stream west of the New England Seamounts and the North Atlantic Current near Flemish Cap.


2012 ◽  
Vol 25 (7) ◽  
pp. 2421-2439 ◽  
Author(s):  
Helene R. Langehaug ◽  
Iselin Medhaug ◽  
Tor Eldevik ◽  
Odd Helge Otterå

Abstract In the present study the decadal variability in the strength and shape of the subpolar gyre (SPG) in a 600-yr preindustrial simulation using the Bergen Climate Model is investigated. The atmospheric influence on the SPG strength is reflected in the variability of Labrador Sea Water (LSW), which is largely controlled by the North Atlantic Oscillation, the first mode of the North Atlantic atmospheric variability. A combination of the amount of LSW, the overflows from the Nordic seas, and the second mode of atmospheric variability, the East Atlantic Pattern, explains 44% of the modeled decadal variability in the SPG strength. A prior increase in these components leads to an intensified SPG in the western subpolar region. Typically, an increase of one standard deviation (std dev) of the total overflow (1 std dev = 0.2 Sv; 1 Sv ≡ 106 m3 s−1) corresponds to an intensification of about one-half std dev of the SPG strength (1 std dev = 2 Sv). A similar response is found for an increase of one std dev in the amount of LSW, and simultaneously the strength of the North Atlantic Current increases by one-half std dev (1 std dev = 0.9 Sv).


Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Sandro F. Veiga ◽  
Emanuel Giarolla ◽  
Paulo Nobre ◽  
Carlos A. Nobre

Important features of the Atlantic meridional mode (AMM) are not fully understood. We still do not know what determines its dominant decadal variability or the complex physical processes that sustain it. Using reanalysis datasets, we investigated the influence of the North Atlantic Ocean variability on the dominant decadal periodicity that characterizes the AMM. Statistical analyses demonstrated that the correlation between the sea surface temperature decadal variability in the Atlantic Ocean and the AMM time series characterizes the Atlantic multidecadal oscillation (AMO). This corroborates previous studies that demonstrated that the AMO precedes the AMM. A causal inference with a newly developed rigorous and quantitative causality analysis indicates that the AMO causes the AMM. To further understand the influence of the subsurface ocean on the AMM, the relationship between the ocean heat content (0–300 m) decadal variability and AMM was analyzed. The results show that although there is a significant zero-lag correlation between the ocean heat content in some regions of the North Atlantic (south of Greenland and in the eastern part of the North Atlantic) and the AMM, their cause-effect relationship on decadal time scales is unlikely. By correlating the AMO with the ocean heat content (0–300 m) decadal variability, the former precedes the latter; however, the causality analysis shows that the ocean heat content variability drives the AMO, corroborating several studies that point out the dominant role of the ocean heat transport convergence on AMO.


2019 ◽  
Author(s):  
Mareike Schuster ◽  
Jens Grieger ◽  
Andy Richling ◽  
Thomas Schartner ◽  
Sebastian Illing ◽  
...  

Abstract. In this study the latest version of the MiKlip decadal hindcast system is analyzed and the effect of different horizontal and vertical resolutions on the prediction skill of the northern hemisphere extra-tropical atmospheric circulation is assessed. Four metrics – the stormtrack, blocking frequencies, cyclone frequencies and windstorm frequencies – are analyzed with respect to the anomaly correlation of their winter averages. The model bias and hindcast skill are evaluated in both, a lower resolution version (LR, atm: T63L47, ocean: 1.5° L40) and a higher resolution version (HR, atm: T127L95, ocean: 0.4° L40) of the MPI-ESM system, for the lead years 2–5 using initializations between 1978 and 2012. While the LR version shows common shortcomings of lower resolution climate models, e.g. a too zonal stormtrack and a negative bias of blocking frequencies over the eastern North Atlantic and Europe, the HR version works against these biases. As a result, a functional chain of significantly improved decadal prediction skill between all four metrics is found with the increase of the spatial resolution. While the stormtrack, is significantly improved primarily over the main source region of synoptic activity – the North Atlantic Current, the other extra-tropical measures experience a significant improvement downstream thereof. Thus, the skill of the cyclone frequencies is significantly improved over the central North Atlantic and Northern Europe, the skill of the blocking frequencies is significantly improved over the Mediterranean, Scandinavia and Eastern Europe and the skill of the windstorms is significantly improved over Newfoundland and Central Europe. Not only is the skill improved with the increase in resolution, but the HR system itself exhibits significant skill over large areas of the North Atlantic and European sector for all four circulation metrics. These results are particularly promising regarding the high socio-economic impact of European winter windstorms and blocking situations.


Author(s):  
Harry J Dowsett ◽  
Mark A Chandler ◽  
Marci M Robinson

The Mid-Pliocene is the most recent interval in the Earth's history to have experienced warming of the magnitude predicted for the second half of the twenty-first century and is, therefore, a possible analogue for future climate conditions. With continents basically in their current positions and atmospheric CO 2 similar to early twenty-first century values, the cause of Mid-Pliocene warmth remains elusive. Understanding the behaviour of the North Atlantic Ocean during the Mid-Pliocene is integral to evaluating future climate scenarios owing to its role in deep water formation and its sensitivity to climate change. Under the framework of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) sea surface reconstruction, we synthesize Mid-Pliocene North Atlantic studies by PRISM members and others, describing each region of the North Atlantic in terms of palaeoceanography. We then relate Mid-Pliocene sea surface conditions to expectations of future warming. The results of the data and climate model comparisons suggest that the North Atlantic is more sensitive to climate change than is suggested by climate model simulations, raising the concern that estimates of future climate change are conservative.


Sign in / Sign up

Export Citation Format

Share Document