scholarly journals Comparison of Global Precipitation Estimates across a Range of Temporal and Spatial Scales

2016 ◽  
Vol 29 (21) ◽  
pp. 7773-7795 ◽  
Author(s):  
Maria Gehne ◽  
Thomas M. Hamill ◽  
George N. Kiladis ◽  
Kevin E. Trenberth

Abstract Characteristics of precipitation estimates for rate and amount from three global high-resolution precipitation products (HRPPs), four global climate data records (CDRs), and four reanalyses are compared. All datasets considered have at least daily temporal resolution. Estimates of global precipitation differ widely from one product to the next, with some differences likely due to differing goals in producing the estimates. HRPPs are intended to produce the best snapshot of the precipitation estimate locally. CDRs of precipitation emphasize homogeneity over instantaneous accuracy. Precipitation estimates from global reanalyses are dynamically consistent with the large-scale circulation but tend to compare poorly to rain gauge estimates since they are forecast by the reanalysis system and precipitation is not assimilated. Regional differences among the estimates in the means and variances are as large as the means and variances, respectively. Even with similar monthly totals, precipitation rates vary significantly among the estimates. Temporal correlations among datasets are large at annual and daily time scales, suggesting that compensating bias errors at annual and random errors at daily time scales dominate the differences. However, the signal-to-noise ratio at intermediate (monthly) time scales can be large enough to result in high correlations overall. It is shown that differences on annual time scales and continental regions are around 0.8 mm day−1, which corresponds to 23 W m−2. These wide variations in the estimates, even for global averages, highlight the need for better constrained precipitation products in the future.

Author(s):  
Margaret Kimani ◽  
Joost Hoedjes ◽  
Zhongbo Su

Accurate and consistent rainfall observations are vital for climatological studies in support of better planning and decision making. However, estimation of accurate spatial rainfall is limited by sparse rain gauge distributions. Satellite rainfall products can thus potentially play a role in spatial rainfall estimation but their skill and uncertainties need to be under-stood across spatial-time scales. This study aimed at assessing the temporal and spatial performance of seven satellite products (TARCAT (Tropical Applications of Meteorology using SATellite and ground-based observations (TAMSAT) African Rainfall Climatology And Time series), Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Tropical Rainfall Measuring Mission (TRMM-3B43), Climate Prediction Center (CPC) Morphing (CMORPH), the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks- Climate Data Record (PERSIANN-CDR), CPC Merged Analysis of Precipitation (CMAP) and Global Precipitation Climatology Project (GPCP) using gridded (0.05o) rainfall data over East Africa for 15 years(1998-2012). The products’ error distributions were qualitatively compared with large scale horizontal winds (850 mb) and elevation patterns with respect to corresponding rain gauge data for each month during the ‘long’ (March-May) and ‘short’ (October-December) rainfall seasons. For validation only rainfall means extracted from 284 rain gauge stations were used, from which qualitative analysis using continuous statistics of Root Mean Squared Difference, Standard deviations, Correlations, coefficient of determinations (from scatter plots) were used to evaluate the products’ performance. Results revealed rainfall variability dependence on wind flows and modulated by topographic influences. The products’ errors showed seasonality and dependent on rainfall intensity and topography. Single sensor and coarse resolution products showed lowest performance on high ground areas. All the products showed low skills in retrieving rainfall during ‘short’ rainfall season when orographic processes were dominant. CHIRPS, CMORPH and TRMM performed well, with TRMM showing the best performance in both seasons. There is need to reduce products’ errors before applications.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mojtaba Sadeghi ◽  
Phu Nguyen ◽  
Matin Rahnamay Naeini ◽  
Kuolin Hsu ◽  
Dan Braithwaite ◽  
...  

AbstractAccurate long-term global precipitation estimates, especially for heavy precipitation rates, at fine spatial and temporal resolutions is vital for a wide variety of climatological studies. Most of the available operational precipitation estimation datasets provide either high spatial resolution with short-term duration estimates or lower spatial resolution with long-term duration estimates. Furthermore, previous research has stressed that most of the available satellite-based precipitation products show poor performance for capturing extreme events at high temporal resolution. Therefore, there is a need for a precipitation product that reliably detects heavy precipitation rates with fine spatiotemporal resolution and a longer period of record. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System-Climate Data Record (PERSIANN-CCS-CDR) is designed to address these limitations. This dataset provides precipitation estimates at 0.04° spatial and 3-hourly temporal resolutions from 1983 to present over the global domain of 60°S to 60°N. Evaluations of PERSIANN-CCS-CDR and PERSIANN-CDR against gauge and radar observations show the better performance of PERSIANN-CCS-CDR in representing the spatiotemporal resolution, magnitude, and spatial distribution patterns of precipitation, especially for extreme events.


2004 ◽  
Vol 5 (6) ◽  
pp. 1247-1258 ◽  
Author(s):  
Christopher P. Weaver

Abstract This is Part II of a two-part study of mesoscale land–atmosphere interactions in the summertime U.S. Southern Great Plains. Part I focused on case studies drawn from monthlong (July 1995–97), high-resolution Regional Atmospheric Modeling System (RAMS) simulations carried out to investigate these interactions. These case studies were chosen to highlight key features of the lower-tropospheric mesoscale circulations that frequently arise in this region and season due to mesoscale heterogeneity in the surface fluxes. In this paper, Part II, the RAMS-simulated mesoscale dynamical processes described in the Part I case studies are examined from a domain-averaged perspective to assess their importance in the overall regional hydrometeorology. The spatial statistics of key simulated mesoscale variables—for example, vertical velocity and the vertical flux of water vapor—are quantified here. Composite averages of the mesoscale and large-scale-mean variables over different meteorological or dynamical regimes are also calculated. The main finding is that, during dry periods, or similarly, during periods characterized by large-scale-mean subsidence, the characteristic signature of surface-heterogeneity-forced mesoscale circulations, including enhanced vertical motion variability and enhanced mesoscale fluxes in the lowest few kilometers of the atmosphere, consistently emerges. Furthermore, the impact of these mesoscale circulations is nonnegligible compared to the large-scale dynamics at domain-averaged (200 km × 200 km) spatial scales and weekly to monthly time scales. These findings support the hypothesis that the land– atmosphere interactions associated with mesoscale surface heterogeneity can provide pathways whereby diurnal, mesoscale atmospheric processes can scale up to have more general impacts at larger spatial scales and over longer time scales.


2016 ◽  
Vol 17 (11) ◽  
pp. 2875-2882 ◽  
Author(s):  
Dejene Sahlu ◽  
Efthymios I. Nikolopoulos ◽  
Semu A. Moges ◽  
Emmanouil N. Anagnostou ◽  
Dereje Hailu

Abstract This work presents a first evaluation of the performance of the Integrated Multisatellite Retrievals for GPM (IMERG) precipitation product over the upper Blue Nile basin of Ethiopia. One of the unique features of this study is the availability of hourly rainfall measurements from an experimental rain gauge network in the area. Both the uncalibrated and calibrated versions of IMERG are evaluated, and their performance is contrasted against another high-resolution satellite product, which is the Kalman filter (KF)-based Climate Prediction Center (CPC) morphing technique (CMORPH). The analysis is performed for hourly and daily time scales and at spatial scales that correspond to the nominal resolution of satellite products, which is 0.1° spatial resolution. The period analyzed is focused on a single wet season (May–October 2014). Evaluation is performed using several statistical and categorical error metrics, as well as spatial correlation analysis to assess the ability of satellite products to represent spatial variability of precipitation in the area. Results show that both IMERG products have a better bias ratio and correlation coefficient on both time scales as compared to CMORPH. Comparison statistics show a slight improvement in the skill of detecting rainfall events in IMERG products compared to CMORPH. Results also show a decreasing trend in the detection ability of satellite products for increasing threshold values, highlighting the need to further improve detection during heavy precipitation.


2020 ◽  
Vol 21 (2) ◽  
pp. 161-182 ◽  
Author(s):  
Francisco J. Tapiador ◽  
Andrés Navarro ◽  
Eduardo García-Ortega ◽  
Andrés Merino ◽  
José Luis Sánchez ◽  
...  

AbstractAfter 5 years in orbit, the Global Precipitation Measurement (GPM) mission has produced enough quality-controlled data to allow the first validation of their precipitation estimates over Spain. High-quality gauge data from the meteorological network of the Spanish Meteorological Agency (AEMET) are used here to validate Integrated Multisatellite Retrievals for GPM (IMERG) level 3 estimates of surface precipitation. While aggregated values compare notably well, some differences are found in specific locations. The research investigates the sources of these discrepancies, which are found to be primarily related to the underestimation of orographic precipitation in the IMERG satellite products, as well as to the number of available gauges in the GPCC gauges used for calibrating IMERG. It is shown that IMERG provides suboptimal performance in poorly instrumented areas but that the estimate improves greatly when at least one rain gauge is available for the calibration process. A main, generally applicable conclusion from this research is that the IMERG satellite-derived estimates of precipitation are more useful (r2 > 0.80) for hydrology than interpolated fields of rain gauge measurements when at least one gauge is available for calibrating the satellite product. If no rain gauges were used, the results are still useful but with decreased mean performance (r2 ≈ 0.65). Such figures, however, are greatly improved if no coastal areas are included in the comparison. Removing them is a minor issue in terms of hydrologic impacts, as most rivers in Spain have their sources far from the coast.


2019 ◽  
Vol 11 (9) ◽  
pp. 1080 ◽  
Author(s):  
Amit Bhardwaj ◽  
Vasubandhu Misra

We make use of satellite-based rainfall products from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) to objectively define local onset and demise of the Indian Summer Monsoon (ISM) at the spatial resolution of the meteorological subdivisions defined by the Indian Meteorological Department (IMD). These meteorological sub-divisions are the operational spatial scales for official forecasts issued by the IMD. Therefore, there is a direct practical utility to target these spatial scales for monitoring the evolution of the ISM. We find that the diagnosis of the climatological onset and demise dates and its variations from the TMPA product is quite similar to the rain gauge based analysis of the IMD, despite the differences in the duration of the two datasets. This study shows that the onset date variations of the ISM have a significant impact on the variations of the seasonal length and seasonal rainfall anomalies in many of the meteorological sub-divisions: for example, the early or later onset of the ISM is associated with longer and wetter or shorter and drier ISM seasons, respectively. It is shown that TMPA dataset (and therefore its follow up Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG)) could be usefully adopted for monitoring the onset of the ISM and therefore extend its use to anticipate the potential anomalies of the seasonal length and seasonal rainfall anomalies of the ISM in many of the Indian meteorological sub-divisions.


2020 ◽  
Author(s):  
Luca Brocca ◽  
Stefania Camici ◽  
Christian Massari ◽  
Luca Ciabatta ◽  
Paolo Filippucci ◽  
...  

<p>Soil moisture is a fundamental variable in the water and energy cycle and its knowledge in many applications is crucial. In the last decade, some authors have proposed the use of satellite soil moisture for estimating and improving rainfall, doing hydrology backward. From this research idea, several studies have been published and currently preoperational satellite rainfall products exploiting satellite soil moisture products have been made available.</p><p>The assessment of such products on a global scale has revealed an important result, i.e., the soil moisture based products perform better than state of the art products exactly over regions in which the data are needed: Africa and South America. However, over these areas the assessment against rain gauge observations is problematic and independent approaches are needed to assess the quality of such products and their potential benefit in hydrological applications. On this basis, the use of the satellite rainfall products as input into rainfall-runoff models, and their indirect assessment through river discharge observations is an alternative and valuable approach for evaluating their quality.</p><p>For this study, a newly developed large scale dataset of river discharge observations over 500+ basins throughout Africa has been exploited. Based on such unique dataset, a large scale assessment of multiple near real time satellite rainfall products has been performed: (1) the Early Run version of the Integrated Multi-Satellite Retrievals for GPM (Global Precipitation Measurement), IMERG Early Run, (2) SM2RAIN-ASCAT (https://doi.org/10.5281/zenodo.3405563), and (3) GPM+SM2RAIN (http://doi.org/10.5281/zenodo.3345323). Additionally, gauge-based and reanalysis rainfall products have been considered, i.e., (4) the Global Precipitation Climatology Centre (GPCC), and (5) the latest European Centre for Medium-Range Weather Forecasts reanalysis, ERA5. As rainfall-runoff model, the semi-distributed MISDc (Modello Idrologico Semi-Distribuito in continuo) model has been employed in the period 2007-2018 at daily temporal scale.</p><p>First results over a part of the dataset reveal the great value of satellite soil moisture products in improving satellite rainfall estimates for river flow prediction in Africa. Such results highlight the need to exploit such products for operational systems in Africa addressed to the mitigation of the flood risk and water resources management.</p>


2016 ◽  
Vol 17 (11) ◽  
pp. 2799-2814 ◽  
Author(s):  
M. F. Rios Gaona ◽  
A. Overeem ◽  
H. Leijnse ◽  
R. Uijlenhoet

Abstract The Global Precipitation Measurement (GPM) mission is the successor to the Tropical Rainfall Measuring Mission (TRMM), which orbited Earth for ~17 years. With Core Observatory launched on 27 February 2014, GPM offers global precipitation estimates between 60°N and 60°S at 0.1° × 0.1° resolution every 30 min. Unlike during the TRMM era, the Netherlands is now within the coverage provided by GPM. Here the first year of GPM rainfall retrievals from the 30-min gridded Integrated Multisatellite Retrievals for GPM (IMERG) product Day 1 Final Run (V03D) is assessed. This product is compared against gauge-adjusted radar rainfall maps over the land surface of the Netherlands at 30-min, 24-h, monthly, and yearly scales. These radar rainfall maps are considered to be ground truth. The evaluation of the first year of IMERG operations is done through time series, scatterplots, empirical exceedance probabilities, and various statistical indicators. In general, there is a tendency for IMERG to slightly underestimate (2%) countrywide rainfall depths. Nevertheless, the relative underestimation is small enough to propose IMERG as a reliable source of precipitation data, especially for areas where rain gauge networks or ground-based radars do not offer these types of high-resolution data and availability. The potential of GPM for rainfall estimation in a midlatitude country is confirmed.


2020 ◽  
Vol 12 (11) ◽  
pp. 1836 ◽  
Author(s):  
Shankar Sharma ◽  
Yingying Chen ◽  
Xu Zhou ◽  
Kun Yang ◽  
Xin Li ◽  
...  

The Global Precipitation Measurement (GPM) mission provides high-resolution precipitation estimates globally. However, their accuracy needs to be accessed for algorithm enhancement and hydro-meteorological applications. This study applies data from 388 gauges in Nepal to evaluate the spatial-temporal patterns presented in recently-developed GPM-Era satellite-based precipitation (SBP) products, i.e., the Integrated Multi-satellite Retrievals for GPM (IMERG), satellite-only (IMERG-UC), the gauge-calibrated IMERG (IMERG-C), the Global Satellite Mapping of Precipitation (GSMaP), satellite-only (GSMaP-MVK), and the gauge-calibrated GSMaP (GSMaP-Gauge). The main results are as follows: (1) GSMaP-Gauge datasets is more reasonable to represent the observed spatial distribution of precipitation, followed by IMERG-UC, GSMaP-MVK, and IMERG-C. (2) The gauge-calibrated datasets are more consistent (in terms of relative root mean square error (RRMSE) and correlation coefficient (R)) than the satellite-only datasets in representing the seasonal dynamic range of precipitation. However, all four datasets can reproduce the seasonal cycle of precipitation, which is predominately governed by the monsoon system. (3) Although all four SBP products underestimate the monsoonal precipitation, the gauge-calibrated IMERG-C yields smaller mean bias than GSMaP-Gauge, while GSMaP-Gauge shows the smaller RRMSE and higher R-value; indicating IMERG-C is more reliable to estimate precipitation amount than GSMaP-Gauge, whereas GSMaP-Gauge presents more reasonable spatial distribution than IMERG-C. Only IMERG-C moderately reproduces the evident elevation-dependent pattern of precipitation revealed by gauge observations, i.e., gradually increasing with elevation up to 2000 m and then decreasing; while GSMaP-Gauge performs much better in representing the gauge observed spatial pattern than others. (4) The GSMaP-Gauge calibrated based on the daily gauge analysis is more consistent with detecting gauge observed precipitation events among the four datasets. The high-intensity related precipitation extremes (95th percentile) are more intense in regions with an elevation below 2500 m; all four SBP datasets have low accuracy (<30%) and mostly underestimated (by >40%) the frequency of extreme events at most of the stations across the country. This work represents the quantification of the new-generation SBP products on the southern slopes of the central Himalayas in Nepal.


2017 ◽  
Vol 193 ◽  
pp. 36-49 ◽  
Author(s):  
Pari-Sima Katiraie-Boroujerdy ◽  
Ata Akbari Asanjan ◽  
Kuo-lin Hsu ◽  
Soroosh Sorooshian

Sign in / Sign up

Export Citation Format

Share Document