scholarly journals Evaluation of GPM-Era Satellite Precipitation Products on the Southern Slopes of the Central Himalayas Against Rain Gauge Data

2020 ◽  
Vol 12 (11) ◽  
pp. 1836 ◽  
Author(s):  
Shankar Sharma ◽  
Yingying Chen ◽  
Xu Zhou ◽  
Kun Yang ◽  
Xin Li ◽  
...  

The Global Precipitation Measurement (GPM) mission provides high-resolution precipitation estimates globally. However, their accuracy needs to be accessed for algorithm enhancement and hydro-meteorological applications. This study applies data from 388 gauges in Nepal to evaluate the spatial-temporal patterns presented in recently-developed GPM-Era satellite-based precipitation (SBP) products, i.e., the Integrated Multi-satellite Retrievals for GPM (IMERG), satellite-only (IMERG-UC), the gauge-calibrated IMERG (IMERG-C), the Global Satellite Mapping of Precipitation (GSMaP), satellite-only (GSMaP-MVK), and the gauge-calibrated GSMaP (GSMaP-Gauge). The main results are as follows: (1) GSMaP-Gauge datasets is more reasonable to represent the observed spatial distribution of precipitation, followed by IMERG-UC, GSMaP-MVK, and IMERG-C. (2) The gauge-calibrated datasets are more consistent (in terms of relative root mean square error (RRMSE) and correlation coefficient (R)) than the satellite-only datasets in representing the seasonal dynamic range of precipitation. However, all four datasets can reproduce the seasonal cycle of precipitation, which is predominately governed by the monsoon system. (3) Although all four SBP products underestimate the monsoonal precipitation, the gauge-calibrated IMERG-C yields smaller mean bias than GSMaP-Gauge, while GSMaP-Gauge shows the smaller RRMSE and higher R-value; indicating IMERG-C is more reliable to estimate precipitation amount than GSMaP-Gauge, whereas GSMaP-Gauge presents more reasonable spatial distribution than IMERG-C. Only IMERG-C moderately reproduces the evident elevation-dependent pattern of precipitation revealed by gauge observations, i.e., gradually increasing with elevation up to 2000 m and then decreasing; while GSMaP-Gauge performs much better in representing the gauge observed spatial pattern than others. (4) The GSMaP-Gauge calibrated based on the daily gauge analysis is more consistent with detecting gauge observed precipitation events among the four datasets. The high-intensity related precipitation extremes (95th percentile) are more intense in regions with an elevation below 2500 m; all four SBP datasets have low accuracy (<30%) and mostly underestimated (by >40%) the frequency of extreme events at most of the stations across the country. This work represents the quantification of the new-generation SBP products on the southern slopes of the central Himalayas in Nepal.

2020 ◽  
Vol 21 (2) ◽  
pp. 161-182 ◽  
Author(s):  
Francisco J. Tapiador ◽  
Andrés Navarro ◽  
Eduardo García-Ortega ◽  
Andrés Merino ◽  
José Luis Sánchez ◽  
...  

AbstractAfter 5 years in orbit, the Global Precipitation Measurement (GPM) mission has produced enough quality-controlled data to allow the first validation of their precipitation estimates over Spain. High-quality gauge data from the meteorological network of the Spanish Meteorological Agency (AEMET) are used here to validate Integrated Multisatellite Retrievals for GPM (IMERG) level 3 estimates of surface precipitation. While aggregated values compare notably well, some differences are found in specific locations. The research investigates the sources of these discrepancies, which are found to be primarily related to the underestimation of orographic precipitation in the IMERG satellite products, as well as to the number of available gauges in the GPCC gauges used for calibrating IMERG. It is shown that IMERG provides suboptimal performance in poorly instrumented areas but that the estimate improves greatly when at least one rain gauge is available for the calibration process. A main, generally applicable conclusion from this research is that the IMERG satellite-derived estimates of precipitation are more useful (r2 > 0.80) for hydrology than interpolated fields of rain gauge measurements when at least one gauge is available for calibrating the satellite product. If no rain gauges were used, the results are still useful but with decreased mean performance (r2 ≈ 0.65). Such figures, however, are greatly improved if no coastal areas are included in the comparison. Removing them is a minor issue in terms of hydrologic impacts, as most rivers in Spain have their sources far from the coast.


2020 ◽  
Vol 12 (13) ◽  
pp. 2114
Author(s):  
Christine Kolbe ◽  
Boris Thies ◽  
Nazli Turini ◽  
Zhiyu Liu ◽  
Jörg Bendix

We present the new Precipitation REtrieval covering the TIbetan Plateau (PRETIP) as a feasibility study using the two geostationary (GEO) satellites Elektro-L2 and Insat-3D with reference to the GPM (Global Precipitation Measurement Mission) IMERG (Integrated Multi-satellitE Retrievals for GPM) product. The present study deals with the assignment of the rainfall rate. For precipitation rate assignment, the best-quality precipitation estimates from the gauge calibrated microwave (MW) within the IMERG product were combined with the GEO data by Random Forest (RF) regression. PRETIP was validated with independent MW precipitation information not considered for model training and revealed a good performance on 30 min and 11 km spatio-temporal resolution with a correlation coefficient of R = 0.59 and outperforms the validation of the independent MW precipitation with IMERG’s IR only product (R = 0.18). A comparison of PRETIP precipitation rates in 4 km resolution with daily rain gauge measurements from the Chinese Ministry of Water Resources revealed a correlation of R = 0.49. No differences in the performance of PRETIP for various elevation ranges or between the rainy (July, August) and the dry (May, September) season could be found.


2021 ◽  
Vol 13 (2) ◽  
pp. 234
Author(s):  
Na Zhao

Satellites are capable of observing precipitation over large areas and are particularly suitable for estimating precipitation in high mountains and poorly gauged regions. However, the coarse resolution and relatively low accuracy of satellites limit their applications. In this study, a downscaling scheme was developed to obtain precipitation estimates with high resolution and high accuracy in the Heihe watershed. Shannon’s entropy, together with a semi-variogram, was applied to establish the optimal precipitation station network. A combination of the random forest (RF) method and the residual correction approach with the established rain gauge network was applied to downscale monthly precipitation products from Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG). The results indicated that the RF model showed little improvement in the accuracy of IMERG-based precipitation downscaling. Including residual modification could improve the results of the RF model. The mean absolute error (MAE) and root mean square error (RMSE) values decreased by 19% and 21%, respectively, after residual corrections were added to the RF approach. Moreover, we found that enough rain gauge records are necessary for and remain an important component of tuning model performance. The application of more rain gauges improves the performance of the combined RF and residual modification methods, with the MAE and RMSE values reduced by 8% and 9%, respectively. Residual correction, together with enough precipitation stations, can effectively enhance the quality of the precipitation patterns and magnitudes obtained in the RF downscaling process. The proposed downscaling scheme is an effective tool for increasing the accuracy and spatial resolution of precipitation fields in the Heihe watershed.


Author(s):  
Yang Gao ◽  
Tongwen Wu ◽  
Jun Wang ◽  
Shihao Tang

AbstractThe Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) mission core satellite provides the new-generation global observation of rain since 2014. The main objective of this paper is to evaluate the suitability and limitation of GPM-DPR level-2 products over China. The DPR rain rate products are compared with rain gauge data during the summers of five years (2014-2018). The ground observation network is composed of more than 50000 rain gauges. The DPR precipitation products for all scans (DPR_NS, DPR_MS and DPR_HS) generally underestimate rain rates. However, DPR_MS agrees better with gauge estimates than DPR_NS and DPR_HS, yielding the lowest mean error, systematic deviation, and the highest Pearson correlation coefficient. In addition, all three swath types show obvious overestimation over gauge estimates between 0.5 to 1 mm/h and underestimation when gauge estimates are larger than 1 mm/h. The DPR_HS and DPR_MS agree better with gauge estimates below and above 2.5 mm/h, respectively. A deeper investigation was carried out to analyze the variation of DPR_MS’s performance with respect to terrains over China. An obvious underestimation, relative to gauge estimates, occurs in Tibetan Plateau while a slight overestimation occurs in North China Plain. Furthermore, our comprehensive analysis suggests that in Sichuan Basin, the DPR_MS exhibit the best agreement with gauge estimates.


2018 ◽  
Vol 10 (10) ◽  
pp. 1520 ◽  
Author(s):  
Adrianos Retalis ◽  
Dimitris Katsanos ◽  
Filippos Tymvios ◽  
Silas Michaelides

Global Precipitation Measurement (GPM) high-resolution product is validated against rain gauges over the island of Cyprus for a three-year period, starting from April 2014. The precipitation estimates are available in both high temporal (half hourly) and spatial (10 km) resolution and combine data from all passive microwave instruments in the GPM constellation. The comparison performed is twofold: first the GPM data are compared with the precipitation measurements on a monthly basis and then the comparison focuses on extreme events, recorded throughout the first 3 years of GPM’s operation. The validation is based on ground data from a dense and reliable network of rain gauges, also available in high temporal (hourly) resolution. The first results show very good correlation regarding monthly values; however, the correspondence of GPM in extreme precipitation varies from “no correlation” to “high correlation”, depending on case. This study aims to verify the GPM rain estimates, since such a high-resolution dataset has numerous applications, including the assimilation in numerical weather prediction models and the study of flash floods with hydrological models.


2019 ◽  
Vol 11 (6) ◽  
pp. 697 ◽  
Author(s):  
Fenglin Xu ◽  
Bin Guo ◽  
Bei Ye ◽  
Qia Ye ◽  
Huining Chen ◽  
...  

Accurate estimation of high-resolution satellite precipitation products like Global Precipitation Measurement (GPM) and Tropical Rainfall Measuring Mission (TRMM) is critical for hydrological and meteorological research, providing a benchmark for the continued development and future improvement of these products. This study aims to comprehensively evaluate the Integrated Multi-Satellite Retrievals for GPM (IMERG) and TRMM 3B42V7 products at multiple temporal scales from 1 January 2015 to 31 December 2017 over the Huang-Huai-Hai Plain in China, using daily precipitation data from 59 meteorological stations. Three commonly used statistical metrics (CC, RB, and RMSE) are adopted to quantitatively verify the accuracy of two satellite precipitation products. The assessment also takes into account the precipitation detection capability (POD, FAR, CSI, and ACC) and frequency of different precipitation intensities. The results show that the IMERG and 3B42V7 present strong correlation with meteorological stations observations at annual and monthly scales (CC > 0.90), whereas moderate at the daily scale (CC = 0.76 and 0.69 for IMERG and 3B42V7, respectively). The spatial variability of the annual and seasonal precipitation is well captured by these two satellite products. And spatial patterns of precipitation gradually decrease from south to north over the Huang-Huai-Hai Plain. Both IMERG and 3B42V7 products overestimate precipitation compared with the station observations, of which 3B42V7 has a lower degree of overestimation. Relative to the IMERG, annual precipitation estimates from 3B42V7 show lower RMSE (118.96 mm and 142.67 mm, respectively), but opposite at the daily, monthly, and seasonal scales. IMERG has a better precipitation detection capability than 3B42V7 (POD = 0.83 and 0.67, respectively), especially when detecting trace and solid precipitation. The two precipitation products tend to overestimate moderate (2–10 mm/d) and heavy (10–50 mm/d) precipitation events, but underestimate violent (>50 mm/d) precipitation events. The IMERG is not found capable to detecting precipitation events of different frequencies more precisely. In general, the accuracy of IMERG is better than 3B42V7 product in the Huang-Huai-Hai Plain. The IMERG satellite precipitation product with higher temporal and spatial resolutions can be regarded a reliable data sources in studying hydrological and climatic research.


Author(s):  
Luiz Octavio Fabricio dos Santos ◽  
Carlos Alexandre Santos Querino ◽  
Juliane Kayse Albuquerque da Silva Querino ◽  
Altemar Lopes Pedreira Junior ◽  
Aryanne Resende de Melo Moura ◽  
...  

Rainfall is a meteorological variable of great importance for hydric balance and for weather studies. Rainfall estimation, carried out by satellites, has increased the climatological dataset related to precipitation. However, the accuracy of these data is questionable. This paper aimed to validate the estimates done by the Global Precipitation Measurement (GPM) satellite for the mesoregion of Southern Amazonas State, Brazil. The surface data were collected by the National Water Agency – ANA and National Institute of Meteorology – INMET, and is available at both institutions’ websites. The satellite precipitation data were accessed directly from the NASA webpage. Statistical analysis of Pearson correlation was used, as well as the Willmott’s “d” index and errors from the MAE (Mean Absolute Error) and RMSE (Root Mean Square Error). The GPM satellite satisfactorily estimated the precipitation, once it had correlations above 73% and high Willmott coefficients (between 0.86 and 0.97). The MAE and RMSE showed values that varied from 36.50 mm to 72.49 mm and 13.81 mm to 71.76 mm, respectively. Seasonal rain variations are represented accordingly. In some cases, either an underestimation or an overestimation of the rain data was observed. In the yearly totals, a high rate of similarity between the estimated and measured values was observed. We concluded that the GPM-based multi-satellite precipitation estimates can be used, even though they are not 100% reliable. However, adjustments in calibration for the region are necessary and recommended.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 668 ◽  
Author(s):  
Leandro Salles ◽  
Frédéric Satgé ◽  
Henrique Roig ◽  
Tati Almeida ◽  
Diogo Olivetti ◽  
...  

This study assesses the performance of the new Global Precipitation Measurement (GPM)-based satellite precipitation estimates (SPEs) datasets in the Brazilian Central Plateau and compares it with the previous Tropical Rainfall Measurement Mission (TRMM)-era datasets. To do so, the Integrated Multi-satellitE Retrievals for GPM (IMERG)-v5 and the Global Satellite Mapping of Precipitation (GSMaP)-v7 were evaluated at their original 0.1° spatial resolution and for a 0.25° grid for comparison with TRMM Multi-satellite Precipitation Analysis (TMPA). The assessment was made on an annual, monthly, and daily basis for both wet and dry seasons. Overall, IMERG presents the best annual and monthly results. In both time steps, IMERG’s precipitation estimations present bias with lower magnitudes and smaller root-mean-square error. However, GSMaP performs slightly better for the daily time step based on categorical and quantitative statistical analysis. Both IMERG and GSMaP estimates are seasonally influenced, with the highest difficulty in estimating precipitation occurring during the dry season. Additionally, the study indicates that GPM-based SPEs products are capable of continuing TRMM-based precipitation monitoring with similar or even better accuracy than obtained previously with the widely used TMPA product.


2009 ◽  
Vol 48 (9) ◽  
pp. 1843-1857 ◽  
Author(s):  
David T. Bolvin ◽  
Robert F. Adler ◽  
George J. Huffman ◽  
Eric J. Nelkin ◽  
Jani P. Poutiainen

Abstract Monthly and daily products of the Global Precipitation Climatology Project (GPCP) are evaluated through a comparison with Finnish Meteorological Institute (FMI) gauge observations for the period January 1995–December 2007 to assess the quality of the GPCP estimates at high latitudes. At the monthly scale both the final GPCP combination satellite–gauge (SG) product is evaluated, along with the satellite-only multisatellite (MS) product. The GPCP daily product is scaled to sum to the monthly product, so it implicitly contains monthly-scale gauge influence, although it contains no daily gauge information. As expected, the monthly SG product agrees well with the FMI observations because of the inclusion of limited gauge information. Over the entire analysis period the SG estimates are biased low by 6% when the same wind-loss adjustment is applied to the FMI gauges as is used in the SG analysis. The interannual anomaly correlation is about 0.9. The satellite-only MS product has a lesser, but still reasonably good, interannual correlation (∼0.6) while retaining a similar bias due to the use of a climatological bias adjustment. These results indicate the value of using even a few gauges in the analysis and provide an estimate of the correlation error to be expected in the SG analysis over ocean and remote land areas where gauges are absent. The daily GPCP precipitation estimates compare reasonably well at the 1° latitude × 2° longitude scale with the FMI gauge observations in the summer with a correlation of 0.55, but less so in the winter with a correlation of 0.45. Correlations increase somewhat when larger areas and multiday periods are analyzed. The day-to-day occurrence of precipitation is captured fairly well by the GPCP estimates, but the corresponding precipitation event amounts tend to show wide variability. The results of this study indicate that the GPCP monthly and daily fields are useful for meteorological and hydrological studies but that there is significant room for improvement of satellite retrievals and analysis techniques in this region. It is hoped that the research here provides a framework for future high-latitude assessment efforts such as those that will be necessary for the upcoming satellite-based Global Precipitation Measurement (GPM) mission.


Sign in / Sign up

Export Citation Format

Share Document