Satellite soil moisture improves rainfall just where needed

Author(s):  
Luca Brocca ◽  
Stefania Camici ◽  
Christian Massari ◽  
Luca Ciabatta ◽  
Paolo Filippucci ◽  
...  

<p>Soil moisture is a fundamental variable in the water and energy cycle and its knowledge in many applications is crucial. In the last decade, some authors have proposed the use of satellite soil moisture for estimating and improving rainfall, doing hydrology backward. From this research idea, several studies have been published and currently preoperational satellite rainfall products exploiting satellite soil moisture products have been made available.</p><p>The assessment of such products on a global scale has revealed an important result, i.e., the soil moisture based products perform better than state of the art products exactly over regions in which the data are needed: Africa and South America. However, over these areas the assessment against rain gauge observations is problematic and independent approaches are needed to assess the quality of such products and their potential benefit in hydrological applications. On this basis, the use of the satellite rainfall products as input into rainfall-runoff models, and their indirect assessment through river discharge observations is an alternative and valuable approach for evaluating their quality.</p><p>For this study, a newly developed large scale dataset of river discharge observations over 500+ basins throughout Africa has been exploited. Based on such unique dataset, a large scale assessment of multiple near real time satellite rainfall products has been performed: (1) the Early Run version of the Integrated Multi-Satellite Retrievals for GPM (Global Precipitation Measurement), IMERG Early Run, (2) SM2RAIN-ASCAT (https://doi.org/10.5281/zenodo.3405563), and (3) GPM+SM2RAIN (http://doi.org/10.5281/zenodo.3345323). Additionally, gauge-based and reanalysis rainfall products have been considered, i.e., (4) the Global Precipitation Climatology Centre (GPCC), and (5) the latest European Centre for Medium-Range Weather Forecasts reanalysis, ERA5. As rainfall-runoff model, the semi-distributed MISDc (Modello Idrologico Semi-Distribuito in continuo) model has been employed in the period 2007-2018 at daily temporal scale.</p><p>First results over a part of the dataset reveal the great value of satellite soil moisture products in improving satellite rainfall estimates for river flow prediction in Africa. Such results highlight the need to exploit such products for operational systems in Africa addressed to the mitigation of the flood risk and water resources management.</p>

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Luca Brocca ◽  
Christian Massari ◽  
Thierry Pellarin ◽  
Paolo Filippucci ◽  
Luca Ciabatta ◽  
...  

2017 ◽  
Vol 21 (4) ◽  
pp. 2163-2185 ◽  
Author(s):  
Jefferson S. Wong ◽  
Saman Razavi ◽  
Barrie R. Bonsal ◽  
Howard S. Wheater ◽  
Zilefac E. Asong

Abstract. A number of global and regional gridded climate products based on multiple data sources are available that can potentially provide reliable estimates of precipitation for climate and hydrological studies. However, research into the consistency of these products for various regions has been limited and in many cases non-existent. This study inter-compares several gridded precipitation products over 15 terrestrial ecozones in Canada for different seasons. The spatial and temporal variability of the errors (relative to station observations) was quantified over the period of 1979 to 2012 at a 0.5° and daily spatio-temporal resolution. These datasets were assessed in their ability to represent the daily variability of precipitation amounts by four performance measures: percentage of bias, root mean square error, correlation coefficient, and standard deviation ratio. Results showed that most of the datasets were relatively skilful in central Canada. However, they tended to overestimate precipitation amounts in the west and underestimate in the north and east, with the underestimation being particularly dominant in northern Canada (above 60° N). The global product by WATCH Forcing Data ERA-Interim (WFDEI) augmented by Global Precipitation Climatology Centre (GPCC) data (WFDEI [GPCC]) performed best with respect to different metrics. The Canadian Precipitation Analysis (CaPA) product performed comparably with WFDEI [GPCC]; however, it only provides data starting in 2002. All the datasets performed best in summer, followed by autumn, spring, and winter in order of decreasing quality. Findings from this study can provide guidance to potential users regarding the performance of different precipitation products for a range of geographical regions and time periods.


2013 ◽  
Vol 14 (4) ◽  
pp. 1194-1211 ◽  
Author(s):  
Viviana Maggioni ◽  
Humberto J. Vergara ◽  
Emmanouil N. Anagnostou ◽  
Jonathan J. Gourley ◽  
Yang Hong ◽  
...  

Abstract This study uses a stochastic ensemble-based representation of satellite rainfall error to predict the propagation in flood simulation of three quasi-global-scale satellite rainfall products across a range of basin scales. The study is conducted on the Tar-Pamlico River basin in the southeastern United States based on 2 years of data (2004 and 2006). The NWS Multisensor Precipitation Estimator (MPE) dataset is used as the reference for evaluating three satellite rainfall products: the Tropical Rainfall Measuring Mission (TRMM) real-time 3B42 product (3B42RT), the Climate Prediction Center morphing technique (CMORPH), and the Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks–Cloud Classification System (PERSIANN-CCS). Both ground-measured runoff and streamflow simulations, derived from the NWS Research Distributed Hydrologic Model forced with the MPE dataset, are used as benchmarks to evaluate ensemble streamflow simulations obtained by forcing the model with satellite rainfall corrected using stochastic error simulations from a two-dimensional satellite rainfall error model (SREM2D). The ability of the SREM2D ensemble error corrections to improve satellite rainfall-driven runoff simulations and to characterize the error variability of those simulations is evaluated. It is shown that by applying the SREM2D error ensemble to satellite rainfall, the simulated runoff ensemble is able to envelope both the reference runoff simulation and observed streamflow. The best (uncorrected) product is 3B42RT, but after applying SREM2D, CMORPH becomes the most accurate of the three products in the prediction of runoff variability. The impact of spatial resolution on the rainfall-to-runoff error propagation is also evaluated for a cascade of basin scales (500–5000 km2). Results show a doubling in the bias from rainfall to runoff at all basin scales. Significant dependency to catchment area is exhibited for the random error propagation component.


2020 ◽  
Author(s):  
Tobias Stacke ◽  
Stefan Hagemann ◽  
Gibran Romero-Mujalli ◽  
Jens Hartmann ◽  
Helmuth Thomas

<p>The currently ongoing CMIP6 simulations feature Earth System Models with interactively coupled components for atmosphere, ocean and land surface. Water, energy and momentum between these components are exchanged conservatively. This is crucial to compute climate interactions and their feedbacks consistently. Currently, the representation of biogeochemical cycles in land surface and ocean models is advancing including not only a carbon cycle but also processes based on nutrients like nitrogen or phosphorus. Some land surface models (LSM) already compute leaching of such constituents from the soil, and some ocean models (OM) consider nutrient influx from the land for a number of processes, e.g. biological activity. However, the OMs usually use observed data as input instead of the nutrient loads computed by the LSMs. This setup cannot represent the effects of climate or land use change on nutrient availability and therefore limits the applications of ESMs in respect to climate change impacts.</p><p>For this reason, we are extending our hydrological discharge model, the HDM, to not only transport water but also other constituents. The HDM is an established component of regional (GCOAST, ESM ROM, Reg-CM-ES) as well as global (MPI-ESM) climate models but also applicable as stand-alone model. In a first step, only inert transport is simulated without considering any chemical reactions or biological transformation during river flow. The transport is realized using the same linear cascade infrastructure as used for water transport. However, a successful offline validation of these new features does not only require a realistic routing scheme and consequently the representation of the most important reactions during transport, but also the generation of sensible input data either from large scale models or from observations. In our presentation, we will outline the state of this work together with the compiled input dataset.</p>


2016 ◽  
Vol 29 (21) ◽  
pp. 7773-7795 ◽  
Author(s):  
Maria Gehne ◽  
Thomas M. Hamill ◽  
George N. Kiladis ◽  
Kevin E. Trenberth

Abstract Characteristics of precipitation estimates for rate and amount from three global high-resolution precipitation products (HRPPs), four global climate data records (CDRs), and four reanalyses are compared. All datasets considered have at least daily temporal resolution. Estimates of global precipitation differ widely from one product to the next, with some differences likely due to differing goals in producing the estimates. HRPPs are intended to produce the best snapshot of the precipitation estimate locally. CDRs of precipitation emphasize homogeneity over instantaneous accuracy. Precipitation estimates from global reanalyses are dynamically consistent with the large-scale circulation but tend to compare poorly to rain gauge estimates since they are forecast by the reanalysis system and precipitation is not assimilated. Regional differences among the estimates in the means and variances are as large as the means and variances, respectively. Even with similar monthly totals, precipitation rates vary significantly among the estimates. Temporal correlations among datasets are large at annual and daily time scales, suggesting that compensating bias errors at annual and random errors at daily time scales dominate the differences. However, the signal-to-noise ratio at intermediate (monthly) time scales can be large enough to result in high correlations overall. It is shown that differences on annual time scales and continental regions are around 0.8 mm day−1, which corresponds to 23 W m−2. These wide variations in the estimates, even for global averages, highlight the need for better constrained precipitation products in the future.


2011 ◽  
Vol 11 (1) ◽  
pp. 157-170 ◽  
Author(s):  
Y. Tramblay ◽  
C. Bouvier ◽  
P.-A. Ayral ◽  
A. Marchandise

Abstract. A good knowledge of rainfall is essential for hydrological operational purposes such as flood forecasting. The objective of this paper was to analyze, on a relatively large sample of flood events, how rainfall-runoff modeling using an event-based model can be sensitive to the use of spatial rainfall compared to mean areal rainfall over the watershed. This comparison was based not only on the model's efficiency in reproducing the flood events but also through the estimation of the initial conditions by the model, using different rainfall inputs. The initial conditions of soil moisture are indeed a key factor for flood modeling in the Mediterranean region. In order to provide a soil moisture index that could be related to the initial condition of the model, the soil moisture output of the Safran-Isba-Modcou (SIM) model developed by Météo-France was used. This study was done in the Gardon catchment (545 km2) in South France, using uniform or spatial rainfall data derived from rain gauge and radar for 16 flood events. The event-based model considered combines the SCS runoff production model and the Lag and Route routing model. Results show that spatial rainfall increases the efficiency of the model. The advantage of using spatial rainfall is marked for some of the largest flood events. In addition, the relationship between the model's initial condition and the external predictor of soil moisture provided by the SIM model is better when using spatial rainfall, in particular when using spatial radar data with R2 values increasing from 0.61 to 0.72.


2016 ◽  
Vol 43 (16) ◽  
pp. 8554-8562 ◽  
Author(s):  
Nadine Nicolai‐Shaw ◽  
Lukas Gudmundsson ◽  
Martin Hirschi ◽  
Sonia I. Seneviratne

2014 ◽  
Vol 35 (1) ◽  
pp. 1-14
Author(s):  
Joel Nobert ◽  
Patric Kibasa

Rainfall runoff modelling in a river basin is vital for number of hydrologic applicationincluding water resources assessment. However, rainfall data from sparse gauging stationsare usually inadequate for modelling which is a major concern in Tanzania. This studypresents the results of comparison of Tropical Rainfall Measuring Mission (TRMM)satellite rainfall products at daily and monthly time-steps with ground stations rainfalldata; and explores the possibility of using satellite rainfall data for rainfall runoffmodelling in Pangani River Basin, Tanzania. Statistical analysis was carried out to find thecorrelation between the ground stations data and TRMM estimates. It was found thatTRMM estimates at monthly scale compare reasonably well with ground stations data.Time series comparison was also done at daily and annual time scales. Monthly and annualtime series compared well with coefficient of determination of 0.68 and 0.70, respectively.It was also found that areal rainfall comparison in the northern parts of the study area hadpoor results compared to the rest of areas. On the other hand, rainfall runoff modellingwith ground stations data alone and TRMM data set alone was carried out using five Real-Time River Flow Forecasting System models and then outputs combined by Models OutputsCombination Techniques. The results showed that ground stations data performed betterduring calibration period with coefficient of efficiency of 76.7%, 81.7% and 89.1% forSimple Average Method, Weight Average Method and Neural Network Method respectively.Simulation results using TRMM data were 59.8%, 73.5% and 76.8%. It can therefore beconcluded that TRMM data are adequate and promising in hydrological modelling.


2017 ◽  
Author(s):  
Christian Massari ◽  
Wade Crow ◽  
Luca Brocca

Abstract. Satellite-based rainfall estimates have great potential value for a wide range of applications, but their validation is challenging due to the scarcity of ground-based observations of rainfall in many areas of the planet. Recent studies have suggested the use of Triple Collocation (TC) to characterize uncertainties associated with rainfall estimates by using three collocated products of this variable. However, TC requires the simultaneous availability of three products with mutually-uncorrelated errors, a requirement that is difficult to satisfy among current global precipitation datasets. In this study, a recently-developed method for rainfall estimation from soil moisture observations, SM2RAIN, is demonstrated to facilitate the accurate application of TC within triplets containing two state-of-the art satellite rainfall estimates and a reanalysis product. The validity of different TC assumptions are indirectly tested via a high quality ground rainfall product over the Contiguous United States (CONUS), showing that SM2RAIN can provide a truly independent source of rainfall accumulation information which uniquely satisfies the assumptions underlying TC. On this basis, TC is applied with SM2RAIN on a global scale in an optimal configuration to calculate, for the first time, reliable global correlations (versus an unknown truth) of the aforementioned products without using a ground benchmark dataset. The analysis is carried out during the period 2012–2015 using daily rainfall accumulation products obtained at 1° × 1° spatial resolution. Results convey the relatively high accuracy of the satellite rainfall estimates in Eastern North and South America, South Africa, Southern and Eastern Asia, Eastern Australia as well as Southern Europe and complementary performances between the reanalysis product and SM2RAIN, with the first performing reasonably well in the northern hemisphere and the second providing very good performance in the southern hemisphere. The methodology presented in this study can be used to identify the best rainfall product for hydrologic models with sparsely- gauged areas and provide the basis for an optimal integration among different rainfall products.


2014 ◽  
Vol 18 (2) ◽  
pp. 691-708 ◽  
Author(s):  
J. Boé ◽  
F. Habets

Abstract. In this article, multi-decadal variations in the French hydroclimate are investigated, with a specific focus on river flows. Based on long observed series, it is shown that river flows in France generally exhibit large multi-decadal variations in the instrumental period (defined in this study as the period from the late 19th century to the present), especially in spring. Differences of means between 21 yr periods of the 20th century as large as 40% are indeed found for many gauging stations. Multi-decadal spring river flow variations are associated with variations in spring precipitation and temperature. These multi-decadal variations in precipitation are themselves found to be driven by large-scale atmospheric circulation, more precisely by a multi-decadal oscillation in a sea level pressure dipole between western Europe and the eastern Atlantic. It is suggested that the Atlantic Multidecadal Variability, the main mode of multi-decadal variability in the North Atlantic–Europe sector, controls those variations in large-scale circulation and is therefore the main ultimate driver of multi-decadal variations in spring river flows. Potential multi-decadal variations in river flows in other seasons, and in particular summer, are also noted. As they are not associated with significant surface climate anomalies (i.e. temperature, precipitation) in summer, other mechanisms are investigated based on hydrological simulations. The impact of climate variations in spring on summer soil moisture, and the impact of soil moisture in summer on the runoff-to-precipitation ratio, could potentially play a role in multi-decadal summer river flow variations. The large amplitude of the multi-decadal variations in French river flows suggests that internal variability may play a very important role in the evolution of river flows during the next decades, potentially temporarily limiting, reversing or seriously aggravating the long-term impacts of anthropogenic climate change.


Sign in / Sign up

Export Citation Format

Share Document