scholarly journals Strengthening and Westward Shift of the Tropical Pacific Walker Circulation during the Mid-Holocene: PMIP Simulation Results

2018 ◽  
Vol 31 (6) ◽  
pp. 2283-2298 ◽  
Author(s):  
Zhiping Tian ◽  
Tim Li ◽  
Dabang Jiang

Based on the zonal mass streamfunction, the mid-Holocene annual and seasonal changes in the tropical Pacific Walker circulation (PWC) are examined using numerical simulations from the Paleoclimate Modelling Intercomparison Project Phases 2 and 3. Compared to the preindustrial period, the annual mean of the PWC intensity strengthened (with an average increase of 0.26 × 1014 kg2 m−2 s−1 or 5%), and both the western edge and center of the PWC cell shifted westward (by an average of 4° and 3°, respectively) in the majority of the 29 models used for analysis during the mid-Holocene. Those changes were closely related to an overall increase in the equatorial Indo-Pacific east–west sea level pressure difference and low-level trade winds over the equatorial Pacific. Annual mean PWC changes come mainly from boreal warm seasons. In response to the mid-Holocene orbital forcing, Asian and North African monsoon rainfall was strengthened due to large-scale surface warming in the Northern Hemisphere in boreal warm seasons, which led to an intensified large-scale thermally direct east–west circulation, resulting in the enhancement and westward shift of the tropical PWC. The opposite occurred during the mid-Holocene boreal cold seasons. Taken together, the change in the monsoon rainfall over the key tropical regions of Asia and North Africa and associated large-scale east–west circulation, rather than the equatorial Pacific SST change pattern, played a key role in affecting the mid-Holocene PWC strength.

2014 ◽  
Vol 27 (22) ◽  
pp. 8510-8526 ◽  
Author(s):  
Baoqiang Xiang ◽  
Bin Wang ◽  
Juan Li ◽  
Ming Zhao ◽  
June-Yi Lee

Abstract Understanding the change of equatorial Pacific trade winds is pivotal for understanding the global mean temperature change and the El Niño–Southern Oscillation (ENSO) property change. The weakening of the Walker circulation due to anthropogenic greenhouse gas (GHG) forcing was suggested as one of the most robust phenomena in current climate models by examining zonal sea level pressure gradient over the tropical Pacific. This study explores another component of the Walker circulation change focusing on equatorial Pacific trade wind change. Model sensitivity experiments demonstrate that the direct/fast response due to GHG forcing is to increase the trade winds, especially over the equatorial central-western Pacific (ECWP) (5°S–5°N, 140°E–150°W), while the indirect/slow response associated with sea surface temperature (SST) warming weakens the trade winds. Further, analysis of the results from 19 models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) and the Parallel Ocean Program (POP)–Ocean Atmosphere Sea Ice Soil (OASIS)–ECHAM model (POEM) shows that the projected weakening of the trades is robust only in the equatorial eastern Pacific (EEP) ( 5°S–5°N, 150°–80°W), but highly uncertain over the ECWP with 9 out of 19 CMIP5 models producing intensified trades. The prominent and robust weakening of EEP trades is suggested to be mainly driven by a top-down mechanism: the mean vertical advection of more upper-tropospheric warming downward to generate a cyclonic circulation anomaly in the southeast tropical Pacific. In the ECWP, the large intermodel spread is primarily linked to model diversity in simulating the relative warming of the equatorial Pacific versus the tropical mean sea surface temperature. The possible root causes of the uncertainty for the trade wind change are also discussed.


2013 ◽  
Vol 26 (8) ◽  
pp. 2601-2613 ◽  
Author(s):  
Zeng-Zhen Hu ◽  
Arun Kumar ◽  
Hong-Li Ren ◽  
Hui Wang ◽  
Michelle L’Heureux ◽  
...  

Abstract An interdecadal shift in the variability and mean state of the tropical Pacific Ocean is investigated within the context of changes in El Niño–Southern Oscillation (ENSO). Compared with 1979–99, the interannual variability in the tropical Pacific was significantly weaker in 2000–11, and this shift can be seen by coherent changes in both the tropical atmosphere and ocean. For example, the equatorial thermocline tilt became steeper during 2000–11, which was consistent with positive (negative) sea surface temperature anomalies, increased (decreased) precipitation, and enhanced (suppressed) convection in the western (central and eastern) tropical Pacific, which reflected an intensification of the Walker circulation. The combination of a steeper thermocline slope with stronger surface trade winds is proposed to have hampered the eastward migration of the warm water along the equatorial Pacific. As a consequence, the variability of the warm water volume was reduced and thus ENSO amplitude also decreased. Sensitivity experiments with the Zebiak–Cane model confirm the link between thermocline slope, wind stress, and the amplitude of ENSO.


2021 ◽  
Author(s):  
Ulla K. Heede ◽  
Alexey V. Fedorov

<p>Understanding the tropical Pacific response to global warming remains a challenging problem due to discrepancies between models and observations, as well as a large intermodel spread in future projections. Here, we assess the recent and future evolution of the equatorial Pacific east-west temperature gradient, and the Walker circulation within the CMIP6 dataset. Using 40 models, we compare simulated tropical climate change across a wide range of experiments with varying CO<sub>2</sub> and aerosol forcing. In abrupt CO<sub>2</sub>-increase scenarios, many models generate an initial strengthening of the east-west gradient resembling an ocean thermostat (OT), characterized by lack of warming in the central Pacific, followed by a small weakening; other models generate an immediate weakening that becomes progressively larger establishing a pronounced eastern equatorial Pacific (EP) warming pattern. The initial response in these CO<sub>2</sub>-only experiments is a very good predictor for the future EP pattern simulated in future warming scenarios, but not in historical simulations showing no multi-model trend. The likely explanation is that recent CO<sub>2</sub>-driven changes in the tropical Pacific, which are relatively small compared to future projections, are masked by aerosol effects. In future warming scenarios, however, the EP warming pattern emerges within 20-40 years as greenhouse gases overcome aerosol forcing. These findings highlight the need to understand the largely overlooked, but possibly significant role of aerosols in delaying sea surface warming in the tropical Pacific, and the implications for predicting future climate change across the tropics.</p>


2021 ◽  
Author(s):  
Ulla Heede ◽  
Alexey Fedorov

Abstract Understanding the tropical Pacific response to global warming remains a challenging problem. Here, we assess the recent and future evolution of the equatorial Pacific east-west temperature gradient, and the Walker circulation, across a range of different greenhouse warming experiments within the CMIP6 dataset. In abrupt CO2-increase scenarios many models generate an initial strengthening of this gradient resembling an ocean thermostat (OT), followed by a small weakening; other models generate an immediate weakening that becomes progressively larger establishing a pronounced eastern equatorial Pacific (EP) warming pattern. The initial response in these experiments is a very good predictor for the future EP pattern simulated in both abrupt and realistic warming scenarios, but not in historical simulations showing no multi-model trend. The likely explanation is that recent CO2-driven changes in the tropical Pacific are masked by aerosol effects, and a potential OT delay, while the EP warming pattern will emerge as greenhouse gases overcome aerosol forcing.


2009 ◽  
Vol 22 (10) ◽  
pp. 2541-2556 ◽  
Author(s):  
Malcolm J. Roberts ◽  
A. Clayton ◽  
M.-E. Demory ◽  
J. Donners ◽  
P. L. Vidale ◽  
...  

Abstract Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.


2021 ◽  
Author(s):  
Iñigo Gómara ◽  
Belén Rodríguez-Fonseca ◽  
Elsa Mohino ◽  
Teresa Losada ◽  
Irene Polo ◽  
...  

AbstractTropical Pacific upwelling-dependent ecosystems are the most productive and variable worldwide, mainly due to the influence of El Niño Southern Oscillation (ENSO). ENSO can be forecasted seasons ahead thanks to assorted climate precursors (local-Pacific processes, pantropical interactions). However, owing to observational data scarcity and bias-related issues in earth system models, little is known about the importance of these precursors for marine ecosystem prediction. With recently released reanalysis-nudged global marine ecosystem simulations, these constraints can be sidestepped, allowing full examination of tropical Pacific ecosystem predictability. By complementing historical fishing records with marine ecosystem model data, we show herein that equatorial Atlantic Sea Surface Temperatures (SSTs) constitute a superlative predictability source for tropical Pacific marine yields, which can be forecasted over large-scale areas up to 2 years in advance. A detailed physical-biological mechanism is proposed whereby Atlantic SSTs modulate upwelling of nutrient-rich waters in the tropical Pacific, leading to a bottom-up propagation of the climate-related signal across the marine food web. Our results represent historical and near-future climate conditions and provide a useful springboard for implementing a marine ecosystem prediction system in the tropical Pacific.


2014 ◽  
Vol 27 (7) ◽  
pp. 2757-2778 ◽  
Author(s):  
N. J. Burls ◽  
A. V. Fedorov

Abstract The mean east–west sea surface temperature gradient along the equator is a key feature of tropical climate. Tightly coupled to the atmospheric Walker circulation and the oceanic east–west thermocline tilt, it effectively defines tropical climate conditions. In the Pacific, its presence permits the El Niño–Southern Oscillation phenomenon. What determines this temperature gradient within the fully coupled ocean–atmosphere system is therefore a central question in climate dynamics, critical for understanding past and future climates. Using a comprehensive coupled model [Community Earth System Model (CESM)], the authors demonstrate how the meridional gradient in cloud albedo between the tropics and midlatitudes (Δα) sets the mean east–west sea surface temperature gradient in the equatorial Pacific. To change Δα in the numerical experiments, the authors change the optical properties of clouds by modifying the atmospheric water path, but only in the shortwave radiation scheme of the model. When Δα is varied from approximately −0.15 to 0.1, the east–west SST contrast in the equatorial Pacific reduces from 7.5°C to less than 1°C and the Walker circulation nearly collapses. These experiments reveal a near-linear dependence between Δα and the zonal temperature gradient, which generally agrees with results from the Coupled Model Intercomparison Project phase 5 (CMIP5) preindustrial control simulations. The authors explain the close relation between the two variables using an energy balance model incorporating the essential dynamics of the warm pool, cold tongue, and Walker circulation complex.


2011 ◽  
Vol 24 (14) ◽  
pp. 3593-3608 ◽  
Author(s):  
Dongliang Yuan ◽  
Jing Wang ◽  
Tengfei Xu ◽  
Peng Xu ◽  
Zhou Hui ◽  
...  

Abstract Controlled numerical experiments using ocean-only and ocean–atmosphere coupled general circulation models show that interannual sea level depression in the eastern Indian Ocean during the Indian Ocean dipole (IOD) events forces enhanced Indonesian Throughflow (ITF) to transport warm water from the upper-equatorial Pacific Ocean to the Indian Ocean. The enhanced transport produces elevation of the thermocline and cold subsurface temperature anomalies in the western equatorial Pacific Ocean, which propagate to the eastern equatorial Pacific to induce significant coupled evolution of the tropical Pacific oceanic and atmospheric circulation. Analyses suggest that the IOD-forced ITF transport anomalies are about the same amplitudes as those induced by the Pacific ENSO. Results of the coupled model experiments suggest that the anomalies induced by the IOD persist in the equatorial Pacific until the year following the IOD event, suggesting the importance of the oceanic channel in modulating the interannual climate variations of the tropical Pacific Ocean at the time lag beyond one year.


Sign in / Sign up

Export Citation Format

Share Document