scholarly journals Impacts of Broad-Scale Surface Freshening of the Southern Ocean in a Coupled Climate Model

2018 ◽  
Vol 31 (7) ◽  
pp. 2613-2632 ◽  
Author(s):  
Ariaan Purich ◽  
Matthew H. England ◽  
Wenju Cai ◽  
Arnold Sullivan ◽  
Paul J. Durack

The Southern Ocean surface has freshened in recent decades, increasing water column stability and reducing upwelling of warmer subsurface waters. The majority of CMIP5 models underestimate or fail to capture this historical surface freshening, yet little is known about the impact of this model bias on regional ocean circulation and hydrography. Here experiments are performed using a global coupled climate model with additional freshwater applied to the Southern Ocean to assess the influence of recent surface freshening. The simulations explore the impact of persistent and long-term broad-scale freshening as a result of processes including precipitation minus evaporation changes. Thus, unlike previous studies, the freshening is applied as far north as 55°S, beyond the Antarctic ice margin. It is found that imposing a large-scale surface freshening causes a surface cooling and sea ice increase under preindustrial conditions, because of a reduction in ocean convection and weakened entrainment of warm subsurface waters into the surface ocean. This is consistent with intermodel relationships between CMIP5 models and the simulations, suggesting that models with larger surface freshening also exhibit stronger surface cooling and increased sea ice. Additional experiments are conducted with surface salinity restoration applied to capture observed regional salinity trends. Remarkably, without any mechanical wind trend forcing, these simulations accurately represent the spatial pattern of observed surface temperature and sea ice trends around Antarctica. This study highlights the importance of accurately simulating changes in Southern Ocean salinity to capture changes in ocean circulation, sea surface temperature, and sea ice.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ariaan Purich ◽  
Ghyslaine Boschat ◽  
Giovanni Liguori

AbstractThe Southern Ocean exerts a strong influence on global climate, regulating the storage and transport of heat, freshwater and carbon throughout the world’s oceans. While the majority of previous studies focus on how wind changes influence Southern Ocean circulation patterns, here we set out to explore potential feedbacks from the ocean to the atmosphere. To isolate the role of oceanic variability on Southern Hemisphere climate, we perform coupled climate model experiments in which Southern Ocean variability is suppressed by restoring sea surface temperatures (SST) over 40°–65°S to the model’s monthly mean climatology. We find that suppressing Southern Ocean SST variability does not impact the Southern Annular Mode, suggesting air–sea feedbacks do not play an important role in the persistence of the Southern Annular Mode in our model. Suppressing Southern Ocean SST variability does lead to robust mean-state changes in SST and sea ice. Changes in mixed layer processes and convection associated with the SST restoring lead to SST warming and a sea ice decline in southern high latitudes, and SST cooling in midlatitudes. These results highlight the impact non-linear processes can have on a model’s mean state, and the need to consider these when performing simulations of the Southern Ocean.


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2013 ◽  
Vol 9 (4) ◽  
pp. 3681-3709 ◽  
Author(s):  
U. Heikkilä ◽  
S. J. Phipps ◽  
A. M. Smith

Abstract. Reconstruction of solar irradiance has only been possible for the Holocene so far. During the last deglaciation two solar proxies (10Be and 14C) deviate strongly, both of them being influenced by climatic changes in a different way. This work addresses the climate influence on 10Be deposition by means of ECHAM5-HAM atmospheric aerosol-climate model simulations, forced by sea surface temperatures and sea ice extent created by the coupled climate system model CSIRO Mk3L. Three time slice simulations were performed during the last deglaciation: 10 000 BP ("10k"), 11 000 BP ("11k") and 12 000 BP ("12k"), each 30 yr long. The same 10Be production rate was used in each simulation to isolate the impact of climate on 10Be deposition. The changes are found to follow roughly the reduction in the greenhouse gas concentrations within the simulations. The 10k and 11k simulations produce a surface cooling which is symmetrically amplified in the 12k simulation. The precipitation rate is only slightly reduced at high latitudes, but there is a northward shift in the polar jet in the Northern Hemisphere and the stratospheric westerly winds are significantly weakened. These changes occur where the sea ice change is largest in the deglaciation simulations. This leads to a longer residence time of 10Be in the stratosphere by 30 (10k and 11k) to 80 (12k) days, heavily increasing the atmospheric concentrations. Furthermore the shift of westerlies in the troposphere leads to an increase of tropospheric 10Be concentrations, especially at high latitudes. The contribution of dry deposition generally increases, but decreases where sea ice changes are largest. In total, the 10Be deposition rate changes by no more than 20% at mid- to high latitudes, but by up to 50% in the tropics. We conclude that on "long" time scales (a year to a few years), climatic influences on 10Be deposition remain small even though atmospheric concentrations can vary significantly. Averaged over a longer period all 10Be produced has to be deposited by mass conservation. This dominates over any climatic influences on 10Be deposition. Snow concentrations, however, do not follow mass conservation and can potentially be impacted more by climate due to precipitation changes. Quantifying the impact of deglacial climate modulation on 10Be in terms of preserving the solar signal locally is analysed in an accompanying paper (Heikkilä et al., 2013).


2016 ◽  
Vol 29 (5) ◽  
pp. 1655-1672 ◽  
Author(s):  
Andrew G. Pauling ◽  
Cecilia M. Bitz ◽  
Inga J. Smith ◽  
Patricia J. Langhorne

ABSTRACT The possibility that recent Antarctic sea ice expansion resulted from an increase in freshwater reaching the Southern Ocean is investigated here. The freshwater flux from ice sheet and ice shelf mass imbalance is largely missing in models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). However, on average, precipitation minus evaporation (P − E) reaching the Southern Ocean has increased in CMIP5 models to a present value that is about greater than preindustrial times and 5–22 times larger than estimates of the mass imbalance of Antarctic ice sheets and shelves (119–544 ). Two sets of experiments were conducted from 1980 to 2013 in CESM1(CAM5), one of the CMIP5 models, artificially distributing freshwater either at the ocean surface to mimic iceberg melt or at the ice shelf fronts at depth. An anomalous reduction in vertical advection of heat into the surface mixed layer resulted in sea surface cooling at high southern latitudes and an associated increase in sea ice area. Enhancing the freshwater input by an amount within the range of estimates of the Antarctic mass imbalance did not have any significant effect on either sea ice area magnitude or trend. Freshwater enhancement of raised the total sea ice area by 1 × 106 km2, yet this and even an enhancement of was insufficient to offset the sea ice decline due to anthropogenic forcing for any period of 20 years or longer. Further, the sea ice response was found to be insensitive to the depth of freshwater injection.


2012 ◽  
Vol 6 (5) ◽  
pp. 3539-3573 ◽  
Author(s):  
V. Zunz ◽  
H. Goosse ◽  
F. Massonnet

Abstract. Observations over the last 30 yr have shown that the sea ice extent in the Southern Ocean has slightly increased since 1979. Mechanisms responsible for this positive trend have not been well established yet and climate models are generally unable to simulate correctly this expansion. In this study, we focus on two related hypotheses that could explain the misrepresentation of the positive trend in sea ice extent by climate models: an unrealistic internal variability and an inadequate initialization of the system. For that purpose, we analyze the evolution of sea ice around the Antarctic simulated by 24 different general circulation models involved in the 5th Coupled Model Intercomparison Project (CMIP5). On the one hand, historical simulations, driven by external forcing and initialized without observations, are examined. They provide information about the mean state, the variability and the trend in sea ice extent simulated by each model. On the other hand, decadal prediction experiments, driven by external forcing and initialized with some observed fields, allow us to assess the impact of the representation of the observed initial state on the quality of model predictions. Our analyses show that CMIP5 models respond to the forcing, including the one induced by stratospheric ozone depletion, by reducing the sea ice cover in the Southern Ocean. Some simulations display an increase in sea ice extent. However, models strongly overestimate the variability of sea ice extent and the initialization methods currently used in models do not improve systematically the simulated trends in sea ice extent. On the basis of those results, a critical role of the internal variability in the observed increase in the sea ice extent in the Southern Ocean could not be ruled out but current models results appear inadequate to test more precisely this hypothesis.


2021 ◽  
Author(s):  
Thomas Rackow ◽  
Nils Wedi ◽  
Kristian Mogensen ◽  
Peter Dueben ◽  
Helge F. Goessling ◽  
...  

<p>This presentation will give an overview about an ongoing collaboration between the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). Our recent development is a single-executable coupled configuration of the Integrated Forecasting System (IFS) and the Finite Volume Sea Ice-Ocean Model, FESOM2. This configuration is set up to participate in the DYAMOND project alongside ECMWF’s default IFS-NEMO configuration. IFS-FESOM2 and IFS-NEMO are tentative models to generate “Digital Twin” storm-scale, coupled simulations as envisioned in the European Destination Earth (DestinE) and Next Generation Earth Modelling Systems (NextGEMS) projects.</p><p>FESOM2 has a novel dynamical core that supports multi-resolution triangular grids. The model and its predecessor FESOM1 have been used in many studies over the last decade, with a focus on the role of the polar regions in global ocean circulation. The impact of eddy-permitting and locally eddy-resolving resolution has been addressed in CMIP6 and HighResMIP simulations as part of the AWI-CM-1-1 global climate model, while simulations with up to 1km resolution in the Arctic Ocean have been performed in stand-alone mode.</p><p>Initially, two coupled IFS-FESOM2 configurations have been tested: A coarse-resolution setup with a nominal 1° ocean, and a DYAMOND-II configuration with 0.25° ocean and IFS at 4.5km global resolution on average. For the latter configuration, FESOM2 is mimicking the “ORCA025” tri-polar curvilinear grid of the NEMO model, whose grid boxes have been split into triangles. Initialisation is from ECMWF’s analysis for IFS and NEMO, and from an ERA5-forced ocean spin-up for FESOM2. We discuss technical challenges with respect to the hybrid OpenMP and MPI parallelization in a single-executable context, describe a novel strategy for resource-efficient writing of model output, and summarise future applications such as exploring the impact of flexible FESOM2 grid configurations on the atmosphere - with ocean simulations that resolve leads in sea ice and ocean eddies almost everywhere.</p>


2021 ◽  
Author(s):  
Martin Mohrmann ◽  
Céline Heuzé ◽  
Sebastiaan Swart

Abstract. Polynyas facilitate air-sea fluxes, impacting climate-relevant properties such as sea ice formation and deep water production. Despite their importance, polynyas have been poorly represented in past generations of climate models. Here we present a method to track the presence, frequency and spatial distribution of polynyas in the Southern Ocean in 27 models participating in the Climate Model Intercomparison Project phase 6 (CMIP6) and two satellite based sea ice products. Only half of the 27 models form open water polynyas (OWP), and most underestimate their area. As in satellite observations, three models show episodes of high OWP activity separated by decades of no OWPs, while other models unrealistically create OWPs nearly every year. The coastal polynya area in contrast is often overestimated, with the least accurate representations occurring in the models with the coarsest horizontal resolution. We show that the presence or absence of OWPs are linked to changes in the regional hydrography, specifically the linkages between polynya activity with deep water convection and/or the shoaling of the upper water column thermocline. Models with an accurate Antarctic Circumpolar Current (ACC) transport and wind stress curl have too frequent OWPs. Biases in polynya representation continue to exist in climate models, which has an impact on the regional ocean circulation and ventilation that require to be addressed. However, emerging iceberg discharge schemes, vertical discretisation or overflow parameterisation, are anticipated to improve polynya representations and associated climate prediction in the future.


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2020 ◽  
Author(s):  
Fanny Lhardy ◽  
Nathaëlle Bouttes ◽  
Didier M. Roche ◽  
Xavier Crosta ◽  
Claire Waelbroeck ◽  
...  

Abstract. Changes in water mass distribution are considered to be a significant contributor to the atmospheric CO2 concentration drop to around 186 ppm recorded during the Last Glacial Maximum (LGM). Yet simulating a glacial Atlantic Meridional Overturning Circulation (AMOC) in agreement with paleotracer data remains a challenge, with most models from previous Paleoclimate Modelling Intercomparison Project (PMIP) phases showing a tendency to simulate a strong and deep North Atlantic Deep Water (NADW) instead of the shoaling inferred from proxy data. Conversely, the simulated Antarctic Bottom Water (AABW) is often reduced compared to its pre-industrial volume, and the Atlantic Ocean stratification is underestimated with respect to data. Inadequate representation of surface conditions, driving deep convection around Antarctica, may explain inaccurate simulated bottom water properties in the Southern Ocean. We investigate here the impact of a range of surface conditions in the Southern Ocean, using nine simulations obtained using different modelling choices and/or boundary conditions in the iLOVECLIM model. Based on data-model comparison of key parameters (sea-surface temperatures and sea ice), we find that only simulations with a cold Southern Ocean and a quite extensive sea-ice cover show an improved agreement with proxy data, despite systematic model biases in the seasonal and regional patterns. We then show that the only simulation which does not display a much deeper NADW is obtained by parameterizing the sinking of brines along Antarctica, a modelling choice reducing the open ocean convection in the Southern Ocean. These results highlight the importance of the representation of convection processes, which have a large impact on the water masses properties, while the choice of boundary conditions appears secondary for the model resolution and variables considered in this study.


Sign in / Sign up

Export Citation Format

Share Document