How Accurate Are Modern Atmospheric Reanalyses for the Data-Sparse Tibetan Plateau Region?

2019 ◽  
Vol 32 (21) ◽  
pp. 7153-7172 ◽  
Author(s):  
Xinghua Bao ◽  
Fuqing Zhang

Abstract More than 6000 independent radiosonde observations from three major Tibetan Plateau experiments during the warm seasons (May–August) of 1998, 2008, and 2015–16 are used to assess the quality of four leading modern atmospheric reanalysis products (CFSR/CFSv2, ERA-Interim, JRA-55, and MERRA-2), and the potential impact of satellite data changes on the quality of these reanalyses in the troposphere over this data-sparse region. Although these reanalyses can reproduce reasonably well the overall mean temperature, specific humidity, and horizontal wind profiles against the benchmark independent sounding observations, they have nonnegligible biases that can be potentially bigger than the analysis-simulated mean regional climate trends over this region. The mean biases and mean root-mean-square errors of winds, temperature, and specific humidity from almost all reanalyses are reduced from 1998 to the two later experiment periods. There are also considerable differences in almost all variables across different reanalysis products, though these differences also become smaller during the 2008 and 2015–16 experiments, in particular for the temperature fields. The enormous increase in the volume and quality of satellite observations assimilated into reanalysis systems is likely the primary reason for the improved quality of the reanalyses during the later field experiment periods. Besides differences in the forecast models and data assimilation methodology, the differences in performance between different reanalyses during different field experiment periods may also be contributed by differences in assimilated information (e.g., observation input sources, selected channels for a given satellite sensor, quality-control methods).

Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 38
Author(s):  
Xinghua Bao ◽  
Fuqing Zhang ◽  
Yang Zhao ◽  
Yueli Chen

Three modern atmospheric reanalyses with different input observation data (NOAA–CIRES 20th Century Reanalysis (20CR), Japanese 55-year Reanalysis (JRA-55), and JRA-55C) were compared against the independent radiosonde observations over the Tibetan Plateau (TP) and the western Yunnan–Guizhou Plateau (YGP) from the China-Japan Meteorological Disaster Reduction Cooperation (JICA/Tibet) Center Project in the summer of 2018 to investigate the effects of the assimilation of the observation data on the quality and accuracy of the reanalyses in the troposphere. The results indicate that the mean biases and mean root-mean-square errors of horizontal wind, temperature, and specific humidity significantly decreased when comparing the 20CR reanalysis method (assimilating only surface pressure) to the JRA-55C method (assimilating conventional surface and upper-air observations) and the JRA-55 (assimilating conventional and satellite observations), and the bias spreads of these aboveground variables in JRA-55C and JRA-55 were cut to almost half of those observed in 20CR. However, the mean biases and uncertainties varied little from JRA-55C to JRA-55. This means that the assimilation of conventional observation data plays a vital role in the quality of reanalyses for the troposphere over these data-sparse plateaus. It was also found that the temperature and specific humidity near the ground over TP showed larger mean biases and bias spans than those over YGP, likely due to the sparser surface observation over TP.


2021 ◽  
Vol 14 (5) ◽  
pp. 2827-2841
Author(s):  
Ziyu Huang ◽  
Lei Zhong ◽  
Yaoming Ma ◽  
Yunfei Fu

Abstract. Precipitation is the key component determining the water budget and climate change of the Tibetan Plateau (TP) under a warming climate. This high-latitude region is regarded as “the Third Pole” of the Earth and the “Asian Water Tower” and influences the eco-economy of downstream regions. However, the intensity and diurnal cycle of precipitation are inadequately depicted by current reanalysis products and regional climate models (RCMs). Spectral nudging is an effective dynamical downscaling method used to improve precipitation simulations of RCMs by preventing simulated fields from drifting away from large-scale reference fields, but the most effective manner of applying spectral nudging over the TP is unclear. In this paper, the effects of spectral nudging parameters (e.g., nudging variables, strengths, and levels) on summer precipitation simulations and associated meteorological variables were evaluated over the TP. The results show that using a conventional continuous integration method with a single initialization is likely to result in the over-forecasting of precipitation events and the over-forecasting of horizontal wind speeds over the TP. In particular, model simulations show clear improvements in their representations of downscaled precipitation intensity and its diurnal variations, atmospheric temperature, and water vapor when spectral nudging is applied towards the horizontal wind and geopotential height rather than towards the potential temperature and water vapor mixing ratio. This altering of the spectral nudging method not only reduces the wet bias of water vapor in the lower troposphere of the ERA-Interim reanalysis (when it is used as the driving field) but also alleviates the cold bias of atmospheric temperatures in the upper troposphere, while maintaining the accuracy of horizontal wind features for the regional model field. The conclusions of this study imply how driving field errors affect model simulations, and these results may improve the reliability of RCM results used to study the long-term regional climate change.


Author(s):  
Hongwen Zhang ◽  
Yanhong Gao

AbstractPrecipitation recycling, as represented by the precipitation contributed by locally evaporated water vapor, is a key indicator of regional changes in the water cycle. The Quasi Isentropic Back-Trajectory method, combined with a global climate model [Community Climate System Model (CCSM)] and regional climate model [Weather Research and Forecasting (WRF) model simulation forced by CCSM (WRF-CCSM)], was used to analyze historical (1982–2005) and future (2090–2099) precipitation recycling over the Tibetan Plateau (TP). The study focuses on the differences in the projection of precipitation recycling ratio (PRR) changes and relevant mechanisms between the fine-resolution (30 km) WRF-CCSM and coarse-resolution (~110 km) CCSM simulations. Compared with CCSM, the biases and root-mean-square errors of the historical evapotranspiration and precipitation over the TP were greatly reduced in the WRF-CCSM simulation, particularly in precipitation. Using WRF-CCSM outputs, higher PRRs in all elevation bands, as well as the opposite seasonal pattern and linear trend of PRR for the river basins in the northern TP, were revealed. Unlike the CCSM projections, WRF-CCSM projects increasing trends of PRR changes with elevation under the RCP4.5 and RCP8.5 scenarios, with the largest increase at an elevation of about 5000 m. WRF-CCSM projects a diverse spatial and seasonal pattern of PRR changes, in contrast to the uniform decrease projected by CCSM. The larger fractional increases of future evapotranspiration contribution (precipitation contributed by local evapotranspiration) per unit warming than precipitation changes in WRF-CCSM suggests an enhanced contribution of locally evaporated moisture to total precipitation in the future under the RCP4.5 and RCP8.5 scenarios.


Author(s):  
Xiaoping Mai ◽  
Yuanyuan Ma ◽  
Yi Yang ◽  
Deqin Li ◽  
Xiaobin Qiu

The grid nudging technique is often used in regional climate dynamical downscaling to make the simulated large-scale fields consistent with the driving fields. In this study, we focused on two specific questions about grid nudging: (1) which nudged variable had a larger impact on the downscaling results and (2) what was the “optimal” grid nudging strategy for each nudged variable to achieve better downscaling result during summer over the Chinese mainland. To solve this queries, 41 3-month long simulations for the summer of 2009 and 2010 were performed using the Weather Research and Forecasting model (WRF) to downscale National Centers for Environmental Prediction (NCEP) Final Operational Global Analysis (FNL) data to a 30-km horizontal resolution. The results showed that nudging horizontal wind or temperature had significant influence on the simulation of almost all conventional meteorological elements; nudging water vapor mainly affected the precipitation, humidity, and 500 hPa temperature. Moreover, the optimum nudging scheme varied with simulated regions and layers. As a whole, the optimal nudging time was one hour or three hours for nudging wind, three hours for nudging temperature, and one hour for nudging water vapor. The optimal nudged level was above the planetary boundary layer for almost every nudged variable.


Author(s):  
Xiaoping Mai ◽  
Yuanyuan Ma ◽  
Yi Yang ◽  
Deqin Li ◽  
Xiaobin Qiu

The grid nudging technique is often used in regional climate dynamical downscaling to make the simulated large-scale fields consistent with the driving fields. In this study, we focused on two specific questions about grid nudging: (1) which nudged variable had a larger impact on the downscaling results and (2) what was the “optimal” grid nudging strategy for each nudged variable to achieve better downscaling result during summer over the Chinese mainland. To solve this queries, 41 3-month long simulations for the summer of 2009 and 2010 were performed using the Weather Research and Forecasting model (WRF) to downscale National Centers for Environmental Prediction (NCEP) Final Operational Global Analysis (FNL) data to a 30-km horizontal resolution. The results showed that nudging horizontal wind or temperature had significant influence on the simulation of almost all conventional meteorological elements; nudging water vapor mainly affected the precipitation, humidity, and 500 hPa temperature. Moreover, the optimum nudging scheme varied with simulated regions and layers. As a whole, the optimal nudging time was one hour or three hours for nudging wind, three hours for nudging temperature, and one hour for nudging water vapor. The optimal nudged level was above the planetary boundary layer for almost every nudged variable.


2020 ◽  
Author(s):  
Ziyu Huang ◽  
Lei Zhong ◽  
Yaoming Ma ◽  
Yunfei Fu

Abstract. Precipitation is the key component determining the water budget and climate change of the Tibetan Plateau (TP) under a warming climate. This high-latitude region is regarded as the Third Pole of the Earth and the Asian Water Tower and influences the eco-economy of downstream regions. However, the intensity and diurnal cycle of precipitation are inadequately depicted by current reanalysis products and regional climate models (RCMs). Spectral nudging is an effective dynamical downscaling method used to improve precipitation simulations of RCMs by preventing simulated fields from drifting away from large-scale reference fields, but the most effective manner of applying spectral nudging over the TP is unclear. In this paper, the effects of spectral nudging parameters (e.g., nudging variables, strengths and levels) on summer precipitation simulations and associated meteorological variables were evaluated over the TP. The results show that using a conventional continuous integration method with a single initialization is likely to result in the overforecasting of precipitation events and the overforecasting of horizontal wind speeds over the TP. In particular, model simulations show clear improvements in their representations of downscaled precipitation intensity and its diurnal variations, atmospheric temperature and water vapor when spectral nudging is applied towards the horizontal wind and geopotential height rather than towards the potential temperature and water vapor mixing ratio. This altering to the spectral nudging method not only reduces the wet bias of water vapor in the lower troposphere of the ERA-Interim reanalysis (when it is used as the reference fields) but also alleviates the cold bias of atmospheric temperatures in the upper troposphere, while maintaining the accuracy of horizontal wind features for the simulated fields. The conclusions of this study imply how reference fields errors impact model simulations, and these results may improve the reliability of RCM results used to study the long-term regional climate change.


2013 ◽  
Vol 57 (3) ◽  
pp. 173-186 ◽  
Author(s):  
X Wang ◽  
M Yang ◽  
G Wan ◽  
X Chen ◽  
G Pang

2019 ◽  
Author(s):  
Chem Int

Liquid effluents discharged by hospitals may contain chemical and biological contaminants whose main source is the different substances used for the treatment of patients. This type of rejection can present a sanitary potentially dangerous risk for human health and can provoke a strong degradation of diverse environmental compartments mainly water and soils. The present study focuses on the quality of the liquid effluents of Hassani Abdelkader’s hospital of Sidi Bel-Abbes (West of Algeria). The results reveal a significant chemical pollution (COD: 879 mgO2/L, BOD5: 850 mgO2/L, NH4+ : 47.9 mg/l, NO2- : 4.2 mg/l, NO3- : 56.8 mg/l with respect to WHO standard of 90 mgO2/L, 30 mgO2/L, 0.5 mg/l, 1 mg/l and 1 mg/l respectively). However, these effluents are biodegradable since the ratio COD/BOD5 do not exceeded the value of 2 in almost all samples. The presence of pathogen germs is put into evidence such as pseudomonas, the clostridium, the staphylococcus, the fecal coliforms and fecal streptococcus. These results show that the direct discharge of these effluents constitutes a major threat to human health and the environment.


2021 ◽  
pp. 234763112110072
Author(s):  
Srinivasan Lakshminarayanan ◽  
N. J. Rao ◽  
G. K. Meghana

The introductory programming course, commonly known as CS1 and offered as a core course in the first year in all engineering programs in India, is unique because it can address higher cognitive levels, metacognition and some aspects of the affective domain. It can provide much needed transformative experiences to students coming from a system of school education that is dominantly performance-driven. Unfortunately, the CS1 course, as practiced in almost all engineering programs, is also performance-driven because of a variety of compulsions. This paper suggests that the inclusion of a course CS0 can bring about transformative learning that can potentially make a significant difference in the quality of learning in all subsequent engineering courses. The suggested instruction design of this course takes the advantage of the unique features of a course in programming. The proposed CS0 course uses “extreme apprenticeship” and “guided discovery” methods of instruction. The effectiveness of these instruction methods was established through the use of the thematic analysis, a well-known qualitative research method, and the associated coding of transformative learning experiences and instruction components.


Noise Mapping ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 248-264
Author(s):  
Rosa Maria Alsina Pagès ◽  
Francesc Alías ◽  
Patrizia Bellucci ◽  
Pier Paolo Cartolano ◽  
Ilaria Coppa ◽  
...  

AbstractThe COVID-19 pandemic was confirmed in Italy at the end of January 2020, when the first positive cases for the virus were identified. At the beginning of March, the virus had spread to all Italian regions and on 10 March 2020 the lockdown phase began, limiting the movement of people and prohibiting almost all commercial activities, businesses and non-essential industries. As a result, millions of people were forced to stay at home, causing a drastic drop in traffic volume, which significantly changed the acoustic environment and air quality of cities. On 4 May 2020, the lockdown was partially lifted and activities were progressively reopened. Therefore, traffic gradually started to increase and, consequently, the noise emitted by motor vehicles. This behaviour was confirmed by the data collected by the DYNAMAP system, an automatic platform developed within the LIFE DYNAMAP project, providing real time traffic noise maps in terms of sound pressure levels and impacts at receivers (people and dwellings exposed to noise level bands). In this paper traffic and non-traffic-related noise events in the cities of Rome and Milan from March to May 2020 are analysed and compared to the corresponding values in 2019 to evaluate the effects of the lockdown period.


Sign in / Sign up

Export Citation Format

Share Document