scholarly journals Western North Pacific Tropical Cyclone Tracks in CMIP5 Models: Statistical Assessment Using a Model-Independent Detection and Tracking Scheme

2019 ◽  
Vol 32 (21) ◽  
pp. 7191-7208 ◽  
Author(s):  
Samuel S. Bell ◽  
Savin S. Chand ◽  
Suzana J. Camargo ◽  
Kevin J. Tory ◽  
Chris Turville ◽  
...  

Abstract Past studies have shown that tropical cyclone (TC) projection results can be sensitive to different types of TC tracking schemes, and that the relative adjustments of detection criteria to accommodate different models may not necessarily provide a consistent platform for comparison of projection results. Here, future climate projections of TC activity in the western North Pacific basin (WNP, defined from 0°–50°N and 100°E–180°) are assessed with a model-independent detection and tracking scheme. This scheme is applied to models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) forced under the historical and representative concentration pathway 8.5 (RCP8.5) conditions. TC tracks from the observed records and independent models are analyzed simultaneously with a curve-clustering algorithm, allowing observed and model tracks to be projected onto the same set of clusters (k = 9). Four of the nine clusters were projected to undergo significant changes in TC frequency. Straight-moving TCs in the South China Sea were projected to significantly decrease. Projected increases in TC frequency were found poleward of 20°N and east of 160°E, consistent with changes in ascending motion, as well as vertical wind shear and relative humidity respectively. Projections of TC track exposure indicated significant reductions for southern China and the Philippines and significant increases for the Korean peninsula and Japan, although very few model TCs reached the latter subtropical regions in comparison to the observations. The use of a fundamentally different detection methodology that overcomes the detector/tracker bias gives increased certainty to projections as best as low-resolution simulations can offer.

2020 ◽  
Author(s):  
Rui Xiong ◽  
Mengqian Lu

<p>The western North Pacific (WNP) is one of the most active tropical cyclone (TC) regions, which can inflict enormous death and massive property damage to surrounding areas. Although many studies about tropical cyclone activities on multi-timescales have been done, most of them focus on the entire basin, variations within the basin deserve more investigations. Besides TC characteristics on different timescales, to investigate the impacts of environment variables on TC and provide informative factors for prediction is another concern in the research community. In this study, we adopt several data science techniques, including Gaussian kernel estimator, wavelet, cross-wavelet coherence and regression analyses, to explore the spatiotemporal variations of TC genesis and associated environmental conditions. Significant semiannual and annual variations of TC genesis have been found in the northern South China Sea (NSCS) and oceanic areas east of the Philippines (OAEP). In the southeast part of WNP (SEWNP), TC genesis shows prominent variations on ENSO time scale. With reconstructed TC series on those frequencies, we further quantify the influences of environmental variables on the primary TC signals over WNP. About 40% of the identified TC variance over NSCS and OAEP can be explained by variability in vertical shear of zonal wind and relative humidity. In the SEWNP, TC genesis reveals strong nonlinear and non-stationary relationships with vertical shear of zonal wind and absolute vorticity. Besides, A probabilistic clustering algorithm is used to describe the TC tracks in the WNP. The best track dataset from JMA is decomposed into three clusters based on genesis location and curvature. For each cluster, we analyze the relationships between TC properties, such as genesis location, trajectory and intensity, and associated environmental conditions using the self-organizing map. The spatial patterns of sea surface temperature have huge impacts on TC genesis location, while the trajectory is largely influenced by geopotential height.</p>


2018 ◽  
Vol 31 (21) ◽  
pp. 8917-8930 ◽  
Author(s):  
Hironori Fudeyasu ◽  
Kosuke Ito ◽  
Yoshiaki Miyamoto

This study statistically investigates the characteristics of tropical cyclones (TCs) undergoing rapid intensification (RI) in the western North Pacific in the 37 years from 1979 to 2015 and the relevant atmospheric and oceanic environments. Among 900 TCs, 201 TCs undergoing RI (RI-TCs) are detected by our definition as a wind speed increase of 30 kt (15.4 m s−1) or more in a 24-h period. RI-TCs potentially occur throughout the year, with low variation in RI-TC occurrence rate among the seasons. Conversely, the annual occurrence of RI-TC varies widely. In El Niño years, TCs tend to undergo RI mainly as a result of average locations at the time of tropical storm formation (TSF) being farther east and south, whereas TCs experience RI less frequently in La Niña years. The occurrence rates of RI-TC increased from the 1990s to the late 2000s. The RI onset time is typically 0–66 h after the TSF and the duration that satisfies the criteria of RI is 1–2 days. RI frequently occurs over the zonally elongated area around the eastern Philippine Sea. The development stage and life-span are longer in RI-TCs than in TCs that do not undergo RI. RI-TCs are small at the time of TSF and tend to develop as intense TCs as a result of environmental conditions favorable for TC development, weak vertical wind shear, high convective available potential energy, and tropical cyclone heat potential. The occurrence rates of RI-TCs that make landfall in Japan and the Philippines are higher than in China and Vietnam.


2019 ◽  
Vol 32 (16) ◽  
pp. 5053-5067 ◽  
Author(s):  
Hyeonjae Lee ◽  
Chun-Sil Jin ◽  
Dong-Hyun Cha ◽  
Minkyu Lee ◽  
Dong-Kyou Lee ◽  
...  

AbstractFuture changes in tropical cyclone (TC) activity over the western North Pacific (WNP) are analyzed using four regional climate models (RCMs) within the Coordinated Regional Climate Downscaling Experiment (CORDEX) for East Asia. All RCMs are forced by the HadGEM2-AO under the historical and representative concentration pathway (RCP) 8.5 scenarios, and are performed at about 50-km resolution over the CORDEX-East Asia domain. In the historical simulations (1980–2005), multi-RCM ensembles yield realistic climatology for TC tracks and genesis frequency during the TC season (June–November), although they show somewhat systematic biases in simulating TC activity. The future (2024–49) projections indicate an insignificant increase in the total number of TC genesis (+5%), but a significant increase in track density over East Asia coastal regions (+17%). The enhanced TC activity over the East Asia coastal regions is mainly related to vertical wind shear weakened by reduced meridional temperature gradient and increased sea surface temperature (SST) at midlatitudes. The future accumulated cyclone energy (ACE) of total TCs increases significantly (+19%) because individual TCs have a longer lifetime (+6.6%) and stronger maximum wind speed (+4.1%) compared to those in the historical run. In particular, the ACE of TCs passing through 25°N increases by 45.9% in the future climate, indicating that the destructiveness of TCs can be significantly enhanced in the midlatitudes despite the total number of TCs not changing greatly.


2015 ◽  
Vol 28 (9) ◽  
pp. 3806-3820 ◽  
Author(s):  
Xidong Wang ◽  
Chunzai Wang ◽  
Liping Zhang ◽  
Xin Wang

Abstract This study investigates the variation of tropical cyclone (TC) rapid intensification (RI) in the western North Pacific (WNP) and its relationship with large-scale climate variability. RI events have exhibited strikingly multidecadal variability. During the warm (cold) phase of the Pacific decadal oscillation (PDO), the annual RI number is generally lower (higher) and the average location of RI occurrence tends to shift southeastward (northwestward). The multidecadal variations of RI are associated with the variations of large-scale ocean and atmosphere variables such as sea surface temperature (SST), tropical cyclone heat potential (TCHP), relative humidity (RHUM), and vertical wind shear (VWS). It is shown that their variations on multidecadal time scales depend on the evolution of the PDO phase. The easterly trade wind is strengthened during the cold PDO phase at low levels, which tends to make equatorial warm water spread northward into the main RI region rsulting from meridional ocean advection associated with Ekman transport. Simultaneously, an anticyclonic wind anomaly is formed in the subtropical gyre of the WNP. This therefore may deepen the depth of the 26°C isotherm and directly increase TCHP over the main RI region. These thermodynamic effects associated with the cold PDO phase greatly support RI occurrence. The reverse is true during the warm PDO phase. The results also indicate that the VWS variability in the low wind shear zone along the monsoon trough may not be critical for the multidecadal modulation of RI events.


2007 ◽  
Vol 20 (22) ◽  
pp. 5497-5509 ◽  
Author(s):  
Kerry Emanuel

Abstract Revised estimates of kinetic energy production by tropical cyclones in the Atlantic and western North Pacific are presented. These show considerable variability on interannual-to-multidecadal time scales. In the Atlantic, variability on time scales of a few years and more is strongly correlated with tropical Atlantic sea surface temperature, while in the western North Pacific, this correlation, while still present, is considerably weaker. Using a combination of basic theory and empirical statistical analysis, it is shown that much of the variability in both ocean basins can be explained by variations in potential intensity, low-level vorticity, and vertical wind shear. Potential intensity variations are in turn factored into components related to variations in net surface radiation, thermodynamic efficiency, and average surface wind speed. In the Atlantic, potential intensity, low-level vorticity, and vertical wind shear strongly covary and are also highly correlated with sea surface temperature, at least during the period in which reanalysis products are considered reliable. In the Pacific, the three factors are not strongly correlated. The relative contributions of the three factors are quantified, and implications for future trends and variability of tropical cyclone activity are discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Difu Sun ◽  
Junqiang Song ◽  
Kaijun Ren ◽  
Xiaoyong Li ◽  
Guangjie Wang

The relationship between ocean subsurface temperature and tropical cyclone (TC) over the western North Pacific (WNP) is studied based on the TC best-track data and global reanalysis data during the period of 1948–2012. Here the TC frequency (TCF), lifespan, and genesis position of TCs are analysed. A distinctive negative correlation between subsurface water temperature and TCF is observed, especially the TCF in the southeastern quadrant of the WNP (0–15°N, 150–180°E). According to the detrended subsurface temperature anomalies of the 125 m depth layer in the main TC genesis area (0–30°N, 100–180°E), we selected the subsurface cold and warm years. During the subsurface cold years, TCs tend to have a longer mean lifespan and a more southeastern genesis position than the subsurface warm years in general. To further investigate the causes of this characteristic, the TC genesis potential indexes (GPI) are used to analyse the contributions of environmental factors to TC activities. The results indicate that the negative correlation between subsurface water temperature and TCF is mainly caused by the variation of TCF in the southeastern quadrant of the WNP, where the oceanic and atmospheric environments are related to ocean subsurface conditions. Specifically, compared with the subsurface warm years, there are larger relative vorticity, higher relative humidity, smaller vertical wind shear, weaker net longwave radiation, and higher ocean mixed layer temperature in the southeastern quadrant during cold years, which are all favorable for genesis and development of TC.


2013 ◽  
Vol 26 (3) ◽  
pp. 973-987 ◽  
Author(s):  
Satoru Yokoi ◽  
Yukari N. Takayabu

Abstract Variability in tropical cyclone (TC) activity is a matter of direct concern for affected populations. On interannual and longer time scales, variability in TC passage frequency can be associated with total TC frequency over the concerned ocean basin [basinwide frequency (BF)], the spatial distribution of TC genesis in the basin [genesis distribution (GD)], and the preferable track (PT) that can be considered as a function of genesis locations. To facilitate investigation of mechanisms responsible for the variability, the authors propose an approach of decomposing anomalies in the passage frequency into contributions of variability in BF, GD, and PT, which is named the Integration of Statistics on TC Activity by Genesis Location (ISTAGL) analysis. Application of this approach to TC best track data in the western North Pacific (WNP) basin reveals that overall distribution of the passage frequency trends over the 1961–2010 period is mainly due to the PT trends. On decadal time scales, passage frequency variability in midlatitudes is primarily due to PT variability, while the BF and GD also play roles in the subtropics. The authors further discuss decadal variability over the East China Sea in detail. The authors demonstrate that northward shift of the PT for TCs generated around the Philippines Sea and westward shift for TCs generated in the eastern part of the WNP contribute the variability with almost equal degree. The relationships between these PT shifts and anomalies in environmental circulation fields are also discussed.


2018 ◽  
Vol 146 (2) ◽  
pp. 435-446 ◽  
Author(s):  
Hironori Fudeyasu ◽  
Ryuji Yoshida

Abstract The characteristics of tropical cyclones (TCs) in the summer and autumn seasons over the western North Pacific that are associated with different environmental factors that influence TC genesis (TCG) were studied. The authors objectively categorized factors into the five TCG factors classified by Ritchie and Holland: monsoon shear line (SL), monsoon confluence region (CR), monsoon gyre (GY), easterly wave (EW), and the Rossby wave energy dispersion from a preexisting TC (PTC). The GY-TCs tended to develop slowly, and the highest rates of occurrence of rapid intensification (RI) were found for the CR-TCs, whereas the GY-TCs rarely experienced RI. The average storm size of the GY-TCs at the time of formation was the largest of the averages among the TC types, while the EW- and PTC-TCs were smaller, although these differences disappeared at the mature time. There were no significant differences in the sea surface temperature (SST) beneath the TCs, but the tropical cyclone heat potential (TCHP) of the PTC-TCs was higher. The PTC-TCs tended to develop as intense TCs and exhibited favorable environmental characteristics, such as high TCHP, high convective available potential energy, and weak vertical shear. The occurrence rate of the PTC-TCs that made landfall in the Philippines was higher than the averages of the other TC types, whereas those of the EW-TCs (PTC-TCs) that made landfall in Japan (China) were lower. These results provide important information for use in disaster prevention.


2012 ◽  
Vol 140 (3) ◽  
pp. 774-788 ◽  
Author(s):  
Carl J. Schreck ◽  
John Molinari ◽  
Anantha Aiyyer

Abstract This study investigates the number of tropical cyclone formations that can be attributed to the enhanced convection from equatorial waves within each basin. Tropical depression (TD)-type disturbances (i.e., easterly waves) were the primary tropical cyclone precursors over the Northern Hemisphere basins, particularly the eastern North Pacific and the Atlantic. In the Southern Hemisphere, however, the number of storms attributed to TD-type disturbances and equatorial Rossby waves were roughly equivalent. Equatorward of 20°N, tropical cyclones formed without any equatorial wave precursor most often over the eastern North Pacific and least often over the western North Pacific. The Madden–Julian oscillation (MJO) was an important tropical cyclone precursor over the north Indian, south Indian, and western North Pacific basins. The MJO also affected tropical cyclogenesis by modulating the amplitudes of higher-frequency waves. Each wave type reached the attribution threshold 1.5 times more often, and tropical cyclogenesis was 3 times more likely, within positive MJO-filtered rainfall anomalies than within negative anomalies. The greatest MJO modulation was observed for storms attributed to Kelvin waves over the north Indian Ocean. The large rainfall rates associated with tropical cyclones can alter equatorial wave–filtered anomalies. This study quantifies the contamination over each basin. Tropical cyclones contributed more than 20% of the filtered variance for each wave type over large potions of every basin except the South Pacific. The largest contamination, exceeding 60%, occurred for the TD band near the Philippines. To mitigate the contamination, the tropical cyclone–related anomalies were removed before filtering in this study.


Sign in / Sign up

Export Citation Format

Share Document