scholarly journals A Survey on the Relationship between Ocean Subsurface Temperature and Tropical Cyclone over the Western North Pacific

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Difu Sun ◽  
Junqiang Song ◽  
Kaijun Ren ◽  
Xiaoyong Li ◽  
Guangjie Wang

The relationship between ocean subsurface temperature and tropical cyclone (TC) over the western North Pacific (WNP) is studied based on the TC best-track data and global reanalysis data during the period of 1948–2012. Here the TC frequency (TCF), lifespan, and genesis position of TCs are analysed. A distinctive negative correlation between subsurface water temperature and TCF is observed, especially the TCF in the southeastern quadrant of the WNP (0–15°N, 150–180°E). According to the detrended subsurface temperature anomalies of the 125 m depth layer in the main TC genesis area (0–30°N, 100–180°E), we selected the subsurface cold and warm years. During the subsurface cold years, TCs tend to have a longer mean lifespan and a more southeastern genesis position than the subsurface warm years in general. To further investigate the causes of this characteristic, the TC genesis potential indexes (GPI) are used to analyse the contributions of environmental factors to TC activities. The results indicate that the negative correlation between subsurface water temperature and TCF is mainly caused by the variation of TCF in the southeastern quadrant of the WNP, where the oceanic and atmospheric environments are related to ocean subsurface conditions. Specifically, compared with the subsurface warm years, there are larger relative vorticity, higher relative humidity, smaller vertical wind shear, weaker net longwave radiation, and higher ocean mixed layer temperature in the southeastern quadrant during cold years, which are all favorable for genesis and development of TC.

2018 ◽  
Vol 146 (3) ◽  
pp. 853-870 ◽  
Author(s):  
Gregory R. Foltz ◽  
Karthik Balaguru ◽  
Samson Hagos

Sea surface temperature (SST) is one of the most important parameters for tropical cyclone (TC) intensification. Here, it is shown that the relationship between SST and TC intensification varies considerably from basin to basin, with SST explaining less than 4% of the variance in TC intensification rates in the Atlantic, 12% in the western North Pacific, and 23% in the eastern Pacific. Several factors are shown to be responsible for these interbasin differences. First, variability of SST along TCs’ tracks is lower in the Atlantic. This is due to smaller horizontal SST gradients in the Atlantic, compared to the Pacific, and stronger damping of prestorm SST’s contribution to TC intensification by the storm-induced cold SST wake in the Atlantic. The damping occurs because SST tends to vary in phase with TC-induced SST cooling: in the Gulf of Mexico and northwestern Atlantic, where SSTs are highest, TCs tend to be strongest and their translations slowest, resulting in the strongest storm-induced cooling. The tendency for TCs to be more intense over the warmest SST in the Atlantic also limits the usefulness of SST as a predictor since stronger storms are less likely to experience intensification. Finally, SST tends to vary out of phase with vertical wind shear and outflow temperature in the western Pacific. This strengthens the relationship between SST and TC intensification more in the western Pacific than in the eastern Pacific or Atlantic. Combined, these factors explain why prestorm SST is such a poor predictor of TC intensification in the Atlantic, compared to the eastern and western North Pacific.


2019 ◽  
Vol 32 (16) ◽  
pp. 5053-5067 ◽  
Author(s):  
Hyeonjae Lee ◽  
Chun-Sil Jin ◽  
Dong-Hyun Cha ◽  
Minkyu Lee ◽  
Dong-Kyou Lee ◽  
...  

AbstractFuture changes in tropical cyclone (TC) activity over the western North Pacific (WNP) are analyzed using four regional climate models (RCMs) within the Coordinated Regional Climate Downscaling Experiment (CORDEX) for East Asia. All RCMs are forced by the HadGEM2-AO under the historical and representative concentration pathway (RCP) 8.5 scenarios, and are performed at about 50-km resolution over the CORDEX-East Asia domain. In the historical simulations (1980–2005), multi-RCM ensembles yield realistic climatology for TC tracks and genesis frequency during the TC season (June–November), although they show somewhat systematic biases in simulating TC activity. The future (2024–49) projections indicate an insignificant increase in the total number of TC genesis (+5%), but a significant increase in track density over East Asia coastal regions (+17%). The enhanced TC activity over the East Asia coastal regions is mainly related to vertical wind shear weakened by reduced meridional temperature gradient and increased sea surface temperature (SST) at midlatitudes. The future accumulated cyclone energy (ACE) of total TCs increases significantly (+19%) because individual TCs have a longer lifetime (+6.6%) and stronger maximum wind speed (+4.1%) compared to those in the historical run. In particular, the ACE of TCs passing through 25°N increases by 45.9% in the future climate, indicating that the destructiveness of TCs can be significantly enhanced in the midlatitudes despite the total number of TCs not changing greatly.


2015 ◽  
Vol 28 (9) ◽  
pp. 3806-3820 ◽  
Author(s):  
Xidong Wang ◽  
Chunzai Wang ◽  
Liping Zhang ◽  
Xin Wang

Abstract This study investigates the variation of tropical cyclone (TC) rapid intensification (RI) in the western North Pacific (WNP) and its relationship with large-scale climate variability. RI events have exhibited strikingly multidecadal variability. During the warm (cold) phase of the Pacific decadal oscillation (PDO), the annual RI number is generally lower (higher) and the average location of RI occurrence tends to shift southeastward (northwestward). The multidecadal variations of RI are associated with the variations of large-scale ocean and atmosphere variables such as sea surface temperature (SST), tropical cyclone heat potential (TCHP), relative humidity (RHUM), and vertical wind shear (VWS). It is shown that their variations on multidecadal time scales depend on the evolution of the PDO phase. The easterly trade wind is strengthened during the cold PDO phase at low levels, which tends to make equatorial warm water spread northward into the main RI region rsulting from meridional ocean advection associated with Ekman transport. Simultaneously, an anticyclonic wind anomaly is formed in the subtropical gyre of the WNP. This therefore may deepen the depth of the 26°C isotherm and directly increase TCHP over the main RI region. These thermodynamic effects associated with the cold PDO phase greatly support RI occurrence. The reverse is true during the warm PDO phase. The results also indicate that the VWS variability in the low wind shear zone along the monsoon trough may not be critical for the multidecadal modulation of RI events.


2007 ◽  
Vol 20 (22) ◽  
pp. 5497-5509 ◽  
Author(s):  
Kerry Emanuel

Abstract Revised estimates of kinetic energy production by tropical cyclones in the Atlantic and western North Pacific are presented. These show considerable variability on interannual-to-multidecadal time scales. In the Atlantic, variability on time scales of a few years and more is strongly correlated with tropical Atlantic sea surface temperature, while in the western North Pacific, this correlation, while still present, is considerably weaker. Using a combination of basic theory and empirical statistical analysis, it is shown that much of the variability in both ocean basins can be explained by variations in potential intensity, low-level vorticity, and vertical wind shear. Potential intensity variations are in turn factored into components related to variations in net surface radiation, thermodynamic efficiency, and average surface wind speed. In the Atlantic, potential intensity, low-level vorticity, and vertical wind shear strongly covary and are also highly correlated with sea surface temperature, at least during the period in which reanalysis products are considered reliable. In the Pacific, the three factors are not strongly correlated. The relative contributions of the three factors are quantified, and implications for future trends and variability of tropical cyclone activity are discussed.


2019 ◽  
Vol 32 (23) ◽  
pp. 8021-8045 ◽  
Author(s):  
Yumi Choi ◽  
Kyung-Ja Ha ◽  
Fei-Fei Jin

Abstract Both the impacts of two types of El Niño on the western North Pacific (WNP) tropical cyclone (TC) activity and the seasonality in the relationship between genesis potential index (GPI) and El Niño–Southern Oscillation (ENSO) are investigated. The ENSO-induced GPI change over the northwestern (southeastern) part of the WNP is mostly attributed to the relative humidity (absolute vorticity) term, revealing a distinct meridional and zonal asymmetry in summer and fall, respectively. The seasonal change in ENSO (background states) from summer to fall is responsible for the seasonal change in GPI anomalies south of 20°N (over the northeastern part of the WNP). The downdraft induced by the strong upper-level convergence in the eastern Pacific (EP)-type El Niño and both the northwestward-shifted relative vorticity and northward-extended convection over the southeastern part of the WNP in the central Pacific (CP)-type El Niño lead to distinct TC impacts over East Asia (EA). The southward movement of genesis location of TCs and increased westward-moving TCs account for the enhanced strong typhoon activity for the EP-type El Niño in summer. In fall the downdraft and anomalous anticyclonic steering flows over the western part of the WNP remarkably decrease TC impacts over EA. The enhanced moist static energy and midlevel upward motion over the eastern part of the WNP under the northern off-equatorial sea surface temperature warming as well as longer passage of TCs toward EA are responsible for the enhanced typhoon activity for the CP-type El Niño. It is thus important to consider the seasonality and El Niño pattern diversity to explore the El Niño–induced TC impacts over EA.


2015 ◽  
Vol 28 (24) ◽  
pp. 9501-9506 ◽  
Author(s):  
Liguang Wu ◽  
Wei Tian ◽  
Qingyuan Liu ◽  
Jian Cao ◽  
John A. Knaff

Abstract Tropical cyclone (TC) size, usually measured with the radius of gale force wind (34 kt or 17 m s−1), is an important parameter for estimating TC risks such as wind damage, rainfall distribution, and storm surge. Previous studies have reported that there is a very weak relationship between TC size and TC intensity. A close examination presented here using satellite-based wind analyses suggests that the relationship between TC size and intensity is nonlinear. TC size generally increases with increasing TC maximum sustained wind before a maximum of 2.50° latitude at an intensity of 103 kt or 53.0 m s−1 and then slowly decreases as the TC intensity further increases. The observed relationship between TC size and intensity is compared to the relationships produced by an 11-yr seasonal numerical simulation of TC activity. The numerical simulations were able to produce neither the observed maximum sustained winds nor the observed nonlinear relationship between TC size and intensity. This finding suggests that TC size cannot reasonably be simulated with 9-km horizontal resolution and increased resolution is needed to study TC size variations using numerical simulations.


2018 ◽  
Vol 31 (3) ◽  
pp. 1015-1028 ◽  
Author(s):  
Jia Liang ◽  
Liguang Wu ◽  
Guojun Gu

Abstract As one major source of forecasting errors in tropical cyclone intensity, rapid weakening of tropical cyclones [an intensity reduction of 20 kt (1 kt = 0.51 m s−1) or more over a 24-h period] over the tropical open ocean can result from the interaction between tropical cyclones and monsoon gyres. This study aims to examine rapid weakening events occurring in monsoon gyres in the tropical western North Pacific (WNP) basin during May–October 2000–14. Although less than one-third of rapid weakening events happened in the tropical WNP basin south of 25°N, more than 40% of them were associated with monsoon gyres. About 85% of rapid weakening events in monsoon gyres occurred in September and October. The rapid weakening events associated with monsoon gyres are usually observed near the center of monsoon gyres when tropical cyclone tracks make a sudden northward turn. The gyres can enlarge the outer size of tropical cyclones and tend to induce prolonged rapid weakening events with an average duration of 33.2 h. Large-scale environmental factors, including sea surface temperature changes, vertical wind shear, and midlevel environmental humidity, are not primary contributors to them, suggesting the possible effect of monsoon gyres on these rapid weakening events by modulating the tropical cyclone structure. This conclusion is conducive to improving operational forecasts of tropical cyclone intensity.


2013 ◽  
Vol 26 (20) ◽  
pp. 7981-7991 ◽  
Author(s):  
Hye-Mi Kim ◽  
Myong-In Lee ◽  
Peter J. Webster ◽  
Dongmin Kim ◽  
Jin Ho Yoo

Abstract The relationship between El Niño–Southern Oscillation (ENSO) and tropical storm (TS) activity over the western North Pacific Ocean is examined for the period from 1981 to 2010. In El Niño years, TS genesis locations are generally shifted to the southeast relative to normal years and the passages of TSs tend to recurve to the northeast. TSs of greater duration and more intensity during an El Niño summer induce an increase of the accumulated tropical cyclone kinetic energy (ACE). Based on the strong relationship between the TS properties and ENSO, a probabilistic prediction for seasonal ACE is investigated using a hybrid dynamical–statistical model. A statistical relationship is developed between the observed ACE and large-scale variables taken from the ECMWF seasonal forecast system 4 hindcasts. The ACE correlates positively with the SST anomaly over the central to eastern Pacific and negatively with the vertical wind shear near the date line. The vertical wind shear anomalies over the central and western Pacific are selected as predictors based on sensitivity tests of ACE predictive skill. The hybrid model performs quite well in forecasting seasonal ACE with a correlation coefficient between the observed and predicted ACE at 0.80 over the 30-yr period. A relative operating characteristic analysis also indicates that the ensembles have significant probabilistic skill for both the above-normal and below-normal categories. By comparing the ACE prediction over the period from 2003 to 2011, the hybrid model appears more skillful than the forecast from the Tropical Storm Risk consortium.


Sign in / Sign up

Export Citation Format

Share Document