Energetics of the Western Hemisphere Circulation Pattern

2019 ◽  
Vol 32 (22) ◽  
pp. 7857-7870 ◽  
Author(s):  
Xin Tan ◽  
Ming Bao ◽  
Xuejuan Ren

Abstract The Western Hemisphere (WH) circulation pattern, identified by self-organizing maps cluster analysis, is a low-frequency atmospheric regime that influences the fluctuations of large-scale circulation over the North Pacific–North American–North Atlantic areas. The reanalysis datasets from ECMWF are used to estimate the energetics of the WH pattern in this study. The composite results based on monthly WH events reveal that the kinetic energy (KE) associated with the WH pattern is maintained through the barotropic conversion from the climatological-mean westerlies, mainly in the Atlantic jet exit regions. The KE could also be gained through the barotropic feedback forcing from transient eddies. The corresponding baroclinic conversion of available potential energy (APE) from the climatological-mean state, which contributes most efficiently to the energy maintenance of the WH pattern, is obvious in the middle and lower troposphere, owing to the thermal contrast of the colder continent and warmer ocean over the North America–North Atlantic sector. The baroclinic conversion associated with the heat flux on the climatological temperature gradient is consistent with the southwestward-tilting height anomalies from 850 to 500 hPa. The baroclinic feedback from transient eddies contributes negatively to the energy conversion and destroys the maintenance of the WH pattern.

2017 ◽  
Vol 30 (24) ◽  
pp. 10259-10274 ◽  
Author(s):  
Xin Tan ◽  
Ming Bao ◽  
Dennis L. Hartmann ◽  
Paulo Ceppi

Previous studies have demonstrated that the NAO, the leading mode of atmospheric low-frequency variability over the North Atlantic, could be linked to northeast Pacific climate variability via the downstream propagation of synoptic waves. In those studies, the NAO and the northeast Pacific climate variability are considered as two separate modes that explain the variance over the North Atlantic sector and the east Pacific–North American sector, respectively. A newly identified low-frequency atmospheric regime—the Western Hemisphere (WH) circulation pattern—provides a unique example of a mode of variability that accounts for variance over the whole North Atlantic–North American–North Pacific sector. The role of synoptic waves in the formation and maintenance of the WH pattern is investigated using the ECMWF reanalysis datasets. Persistent WH events are characterized by the propagation of quasi-stationary Rossby waves across the North Pacific–North American–North Atlantic regions and by associated storm-track anomalies. The eddy-induced low-frequency height anomalies maintain the anomalous low-frequency ridge over the Gulf of Alaska, which induces more equatorward propagation of synoptic waves on its downstream side. The eddy forcing favors the strengthening of the midlatitude jet and the deepening of the mid-to-high-latitude trough over the North Atlantic, whereas the deepening of the trough over eastern North America mostly arises from the quasi-stationary waves propagating from the North Pacific. A case study for the 2013/14 winter is examined to illustrate the downstream development of synoptic waves. The roles of synoptic waves in the formation and maintenance of the WH pattern and in linking the northeast Pacific ridge anomaly with the NAO are discussed.


2011 ◽  
Vol 7 (4) ◽  
pp. 2355-2389 ◽  
Author(s):  
B. J. Dermody ◽  
H. J. de Boer ◽  
M. F. P. Bierkens ◽  
S. L. Weber ◽  
M. J. Wassen ◽  
...  

Abstract. Previous studies have proposed that potential vegetation in the Mediterranean maintained a wetter climate during the Roman Period until the initiation of large scale deforestation. The reduction in evapotranspirative fluxes associated with deforestation is suggested to have caused climatic aridification leading to the establishment of the present-day Mediterranean climate. There is also evidence to indicate that during the Roman Period Mediterranean climate was influenced by low frequency fluctuations in sea level pressure over the North Atlantic, termed here: the Centennial North Atlantic Oscillation (CNAO). In order to understand the importance of each of these mechanisms and disentangle their respective signals in the proxy record, we have employed an interdisciplinary approach that exploits a range of tools and data sources. An analysis of archaeological site distribution and historical texts demonstrate that climate did not increase in aridity since the Roman Period. Using an Earth system model of intermediate complexity prescribed with a reconstruction of ancient deforestation, we find that Mediterranean climate was insensitive to deforestation in the Late Holocene. A novel analysis of a composite of proxy indicators of climatic humidity depicts spatial and temporal patterns consistent with the CNAO. The link between the CNAO during the Roman Period and climatic humidity signals manifest in our composite analysis are demonstrated using a modelling approach. Finally, we present evidence indicating that fluctuations in the CNAO contributed to triggering a societal tipping point in the Eastern Mediterranean at the end of the Roman Period.


2013 ◽  
Vol 70 (9) ◽  
pp. 2854-2874 ◽  
Author(s):  
Marie Drouard ◽  
Gwendal Rivière ◽  
Philippe Arbogast

Abstract Ingredients in the North Pacific flow influencing Rossby wave breakings in the North Atlantic and the intraseasonal variations of the North Atlantic Oscillation (NAO) are investigated using both reanalysis data and a three-level quasigeostrophic model on the sphere. First, a long-term run is shown to reproduce the observed relationship between the nature of the synoptic wave breaking and the phase of the NAO. Furthermore, a large-scale, low-frequency ridge anomaly is identified in the northeastern Pacific in the days prior to the maximum of the positive NAO phase both in the reanalysis and in the model. A large-scale northeastern Pacific trough anomaly is observed during the negative NAO phase but does not systematically precede it. Then, short-term linear and nonlinear simulations are performed to understand how the large-scale ridge anomaly can act as a precursor of the positive NAO phase. The numerical setup allows for analysis of the propagation of synoptic waves in the eastern Pacific in the presence of a large-scale ridge or trough anomaly and their downstream impact onto the Atlantic jet when they break. The ridge acts in two ways. First, it tends to prevent the downstream propagation of small waves compared to long waves. Second, it deflects the propagation of the wave trains in such a way that they mainly propagate equatorward in the Atlantic. The two modes of action favor the anticyclonic wave breaking and, therefore, the positive NAO phase. With the trough, the wave train propagation is more zonal, disturbances are more meridionally elongated, and cyclonic wave breaking is more frequent in the Atlantic than in the ridge case.


Ocean Science ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 17-34
Author(s):  
Lucia Pineau-Guillou ◽  
Pascal Lazure ◽  
Guy Wöppelmann

Abstract. We investigated the long-term changes of the principal tidal component M2 along North Atlantic coasts, from 1846 to 2018. We analysed 18 tide gauges with time series starting no later than 1940. The longest is Brest with 165 years of observations. We carefully processed the data, particularly to remove the 18.6-year nodal modulation. We found that M2 variations are consistent at all the stations in the North-East Atlantic (Cuxhaven, Delfzijl, Hoek van Holland, Newlyn, Brest), whereas some discrepancies appear in the North-West Atlantic. The changes started long before the 20th century and are not linear. The secular trends in M2 amplitude vary from one station to another; most of them are positive, up to 2.5 mm/yr at Wilmington since 1910. Since 1990, the trends switch from positive to negative values in the North-East Atlantic. Concerning the possible causes of the observed changes, the similarity between the North Atlantic Oscillation and M2 variations in the North-East Atlantic suggests a possible influence of the large-scale atmospheric circulation on the tide. Our statistical analysis confirms large correlations at all the stations in the North-East Atlantic. We discuss a possible underlying mechanism. A different spatial distribution of mean sea level (corresponding to water depth) from one year to another, depending on the low-frequency sea-level pressure patterns, could impact the propagation of the tide in the North Atlantic basin. However, the hypothesis is at present unproven.


2019 ◽  
Vol 484 (5) ◽  
pp. 615-618
Author(s):  
A. A. Sizov ◽  
N. V. Mikhailova ◽  
T. M. Bayankina

Large-scale atmosphere–ocean interaction in the Atlantic sector of the Arctic Ocean is analized. New studies demonstrate that the variability of Atlantic water inflow into Nordic seas is driven largely by the leading mode of year-to-year variations in the ocean – atmosphere system–the North Atlantic Oscillation (NAO). A new vision of the effect of the NAO on the hydrophysical characteristics of the Norwegian and Barents seas is offered.


2018 ◽  
Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong

Abstract. In recent decades, the Arctic sea ice has been declining at a rapid pace as the Arctic is warmed at a rate of twice the global average. The underlying physical mechanisms for the Arctic warming and accelerated sea ice retreat are not fully understood. In this study, we apply a relatively novel statistical method called Self-Organizing Maps (SOM) to examine the trend and variability of autumn Arctic sea ice in the past four decades and their relationships to large-scale atmospheric circulation changes. Our results show a large portion of the autumn Arctic sea ice decline between 1979 and 2016 may be associated with anomalous autumn Arctic intrinsic atmospheric modes. The Arctic atmospheric circulation anomalies associated with anomalous sea surface temperature patterns over the North Pacific and North Atlantic influence Arctic sea ice primarily through anomalous temperature and water vapor advection and associated radiative feedback.


2021 ◽  
Vol 8 ◽  
Author(s):  
Diana E. Caldarescu ◽  
Thomas Brey ◽  
Doris Abele ◽  
Lars Beierlein ◽  
Gerrit Lohmann ◽  
...  

Bivalve sclerochronological records with annually resolved growth bands are applicable proxies in reconstructing features of the hydro-climate system. Here we evaluate the relationship between growth indices of A. islandica, previously collected at approximately 82 m depth in the North Atlantic, and seasonal subsurface temperature at various depths for the 1900–2005 period. Correlations with sea surface temperature at the collection site are not significant during winter and weak for the remaining seasons. The strongest in-phase correlations persist for summer and autumn below 56 m water depth, whereas weaker correlations are lagged by one or two years. We also observe similarities with distant water bodies in the North Atlantic sector, and a corresponding large-scale oceanographic pattern that increases significantly with water depth along the trajectory of the North Atlantic Current. We suggest that by investigating the relationship with the temperature signal at various depths locally and at large-scale increases the reliability and application of bivalve shells as marine archives.


2020 ◽  
Author(s):  
Lucia Pineau-Guillou ◽  
Pascal Lazure ◽  
Guy Wöppelmann

Abstract. We investigated the long-term changes of the principal tidal component M2 over the North Atlantic coasts, from 1846 to 2018. We analysed 9 tide gauges with time series starting no later than 1920. The longest is Brest with 165 years of observations. We carefully processed the data, particularly to remove the 18.6-year nodal modulation. We found that M2 variations are consistent at all the stations in the North East Atlantic (Newlyn, Brest, Cuxhaven), whereas some discrepancies appear in the North West Atlantic. The changes started long before the XXth century, and are not linear. The trends vary from a station to another; they are overall positive, up to 0.7 mm/yr. Since 1990, the trends switch from positive to negative values. Concerning the possible causes of the observed changes, the similarity between the North Atlantic Oscillation and M2 variations in the North East Atlantic suggests a possible influence of the large-scale atmospheric circulation on the tide. We discuss a possible underlying mechanism. A different spatial distribution of water heights from one year to another, depending on the low-frequency sea-level pressure patterns, could impact the propagation of the tide in the North Atlantic basin. However, the hypothesis is at present unproven.


2014 ◽  
Vol 27 (24) ◽  
pp. 9082-9100 ◽  
Author(s):  
Panos J. Athanasiadis ◽  
Alessio Bellucci ◽  
Leon Hermanson ◽  
Adam A. Scaife ◽  
Craig MacLachlan ◽  
...  

Abstract Primarily as a response to boundary forcings, certain components of the atmospheric intraseasonal variability are potentially predictable. Particularly referring to the extratropics, the current generation of seasonal forecasting systems is making advancements in predicting these components by realistically initializing many components of the climate system, using higher resolution and utilizing large ensemble sizes. The operational seasonal prediction system of the Met Office (UKMO) and the corresponding system of the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) are analyzed in terms of their representation of different aspects of extratropical low-frequency variability. The UKMO system achieves unprecedented high scores in predicting the winter mean phase of the North Atlantic Oscillation (NAO; correlation 0.62) and the Pacific–North American pattern (PNA; correlation 0.82). The CMCC system, despite its smaller ensemble size and coarser resolution, also exhibits significant skill (0.42 for NAO, 0.51 for PNA). Low-frequency variability is underrepresented in both models, particularly in the eastern North Atlantic. Consequently, their intrinsic variability patterns (sectoral EOFs) are somewhat different from the observed patterns. Regarding the representation of wintertime Northern Hemisphere blocking, after bias correction both systems exhibit a realistic climatology of blocking frequency. In this assessment, instantaneous blocking and large-scale persistent blocking events are identified using daily geopotential height fields at 500 hPa. The blocking signature on the circulation and the dependence of blocking frequency on the NAO are also quite realistic for both systems. Finally, the Met Office system exhibits significant skill in predicting the winter mean frequency of blocking that relates to the NAO.


Sign in / Sign up

Export Citation Format

Share Document