Air–Sea Interactions among Oceanic Low-Level Cloud, Sea Surface Temperature, and Atmospheric Circulation on an Intraseasonal Time Scale in the Summertime North Pacific Based on Satellite Data Analysis

2020 ◽  
Vol 33 (21) ◽  
pp. 9195-9212
Author(s):  
Naoya Takahashi ◽  
Tadahiro Hayasaka

AbstractLow-level cloud plays a key role in modulating air–sea interaction processes and sea surface temperature (SST) variability. The present study investigated the evolution process of oceanic low-level cloud cover (LCC) and related air–sea interaction processes on an intraseasonal time scale in the summertime (June–October) North Pacific (30°–40°N, 165°–175°E) based on satellite observational and reanalysis datasets from 2003 to 2016. The intraseasonal time scale (20–100 days) is dominant not only for the LCC, but also for LCC controlling factors, that is, SST, estimated inversion strength (EIS), and horizontal temperature advection (Tadv). To reveal the lead–lag relationship among these variables, we conducted phase composite analysis with a bandpass filter based on the intraseasonal variability (ISV) of LCC. It suggests that ISV of LCC leads to that of SST and that horizontal dry–cold advection from the poleward region leads to increasing LCC and decreasing SST. The increasing LCC corresponds to a positive relative humidity (RH) anomaly in the lower troposphere, which is due to adiabatic cooling with shallow convection, vertical moisture advection, and meridional RH advection associated with the anomalous cold Tadv. Heat budget analysis of the ocean mixed layer suggests the importance of anomalous dry–cold advection for cooling SST, not only via enhanced latent heat release but also via decreased downward shortwave radiation at the sea surface according to cloud radiative effect with a positive LCC anomaly. Determining the detailed lead–lag relationship between LCC and its controlling factor is a good approach to understand mechanisms of the local processes of both low-level cloud evolution and air–sea interaction.

2008 ◽  
Vol 21 (11) ◽  
pp. 2451-2465 ◽  
Author(s):  
Yan Du ◽  
Tangdong Qu ◽  
Gary Meyers

Abstract Using results from the Simple Ocean Data Assimilation (SODA), this study assesses the mixed layer heat budget to identify the mechanisms that control the interannual variation of sea surface temperature (SST) off Java and Sumatra. The analysis indicates that during the positive Indian Ocean Dipole (IOD) years, cold SST anomalies are phase locked with the season cycle. They may exceed −3°C near the coast of Sumatra and extend as far westward as 80°E along the equator. The depth of the thermocline has a prominent influence on the generation and maintenance of SST anomalies. In the normal years, cooling by upwelling–entrainment is largely counterbalanced by warming due to horizontal advection. In the cooling episode of IOD events, coastal upwelling–entrainment is enhanced, and as a result of mixed layer shoaling, the barrier layer no longer exists, so that the effect of upwelling–entrainment can easily reach the surface mixed layer. Horizontal advection spreads the cold anomaly to the interior tropical Indian Ocean. Near the coast of Java, the northern branch of an anomalous anticyclonic circulation spreads the cold anomaly to the west near the equator. Both the anomalous advection and the enhanced, wind-driven upwelling generate the cold SST anomaly of the positive IOD. At the end of the cooling episode, the enhanced surface thermal forcing overbalances the cooling effect by upwelling/entrainment, and leads to a warming in SST off Java and Sumatra.


2019 ◽  
Vol 32 (19) ◽  
pp. 6271-6284 ◽  
Author(s):  
Xiaofan Li ◽  
Zeng-Zhen Hu ◽  
Ping Liang ◽  
Jieshun Zhu

Abstract In this work, the roles of El Niño–Southern Oscillation (ENSO) in the variability and predictability of the Pacific–North American (PNA) pattern and precipitation in North America in winter are examined. It is noted that statistically about 29% of the variance of PNA is linearly linked to ENSO, while the remaining 71% of the variance of PNA might be explained by other processes, including atmospheric internal dynamics and sea surface temperature variations in the North Pacific. The ENSO impact is mainly meridional from the tropics to the mid–high latitudes, while a major fraction of the non-ENSO variability associated with PNA is confined in the zonal direction from the North Pacific to the North American continent. Such interferential connection on PNA as well as on North American climate variability may reflect a competition between local internal dynamical processes (unpredictable fraction) and remote forcing (predictable fraction). Model responses to observed sea surface temperature and model forecasts confirm that the remote forcing is mainly associated with ENSO and it is the major source of predictability of PNA and winter precipitation in North America.


Sign in / Sign up

Export Citation Format

Share Document