Changes in the characteristics of North Pacific Jet as a Conduit for U. S. surface air temperature in boreal winter across the late 1990s

2021 ◽  
pp. 1-43
Author(s):  
Se-Yong Song ◽  
Sang-Wook Yeh ◽  
Hyun-Su Jo

AbstractThe leading modes of the North Pacific Jet (NPJ) variability include intensity changes and meridional shifts in jet position on the low frequency timescales. These leading modes of NPJ variability are closely associated with weather and climate conditions spanning from Asia to the United States (US). In this study, we investigated changes in the NPJ’s role as a conduit for US surface air temperature (SAT) anomalies during the boreal winter across the late 1990s. We found that the leading mode of NPJ variability changed from the NPJ intensity changes to meridional shifts in NPJ position across the late 1990s. It leads to the change in the role of NPJ as a conduit for US SAT anomalies. Before the late 1990s, the variability of NPJ’s intensity significantly impacted western US SAT anomalies related to the anomalous surface cyclonic circulation over the North Pacific. After the late 1990s, however, the variability of NPJ’s meridional shift significantly influenced on the eastern US SAT anomalies in association with the anomalous surface cyclonic circulation over the northern North Pacific. Further analysis and model experiments revealed that the western to central North Pacific Ocean has been warming since the late 1990s and modulates atmospheric baroclinicity. This phenomenon mainly leads to a northward NPJ shift and implies that the eddy driven mechanism on the NPJ’s formation, which acts to enhance the meridional variability of NPJ position, becomes dominant. We conclude that this northward shift of NPJ could have contributed to enhancing the NPJ’s meridional shift variability, significantly influencing the eastern US SAT anomalies since the late 1990s.

2020 ◽  
Author(s):  
Binhe Luo ◽  
Dehai Luo ◽  
Aiguo Dai ◽  
Lixin Wu

<p>Winter surface air temperature (SAT) over North America exhibits pronounced variability on sub-seasonal-to-interdecadal timescales, but its causes are not fully understood. Here observational and reanalysis data from 1950-2017 are analyzed to investigate these causes. Detrended daily SAT data reveals a known warm-west/cold-east (WWCE) dipole over midlatitude North America and a cold-north/warm-south (CNWS) dipole over eastern North America. It is found that while the North Pacific blocking (PB) is important for the WWCE and CNWS dipoles, they also depend on the phase of the North Atlantic Oscillation (NAO). When a negative-phase NAO (NAO-) concurs with PB, the WWCE dipole is enhanced (compared with the PB alone case) and it also leads to a warm north/cold south dipole anomaly in eastern North America; but when PB occurs with a positive-phase NAO (NAO<sup>+</sup>), the WWCE dipole weakens and the CNWS dipole is enhanced. In particular, the WWCE dipole is favored by a combination of eastward-displaced PB and NAO<sup>-</sup> that form a negative Arctic Oscillation. Furthermore, a WWCE dipole can form over midlatitude North America when PB occurs together with southward-displaced NAO<sup>+</sup>.The PB events concurring with NAO<sup>-</sup> (NAO<sup>+</sup>) and SAT WWCE (CNWS) dipole are favored by the El Nio-like (La Nia-like) SST mode, though related to the North Atlantic warm-cold-warm (cold-warm-cold) SST tripole pattern. It is also found that the North Pacific mode tends to enhance the WWCE SAT dipole through increasing PB-NAO<sup>-</sup> events and producing the WWCE SAT dipole component related to the PB-NAO<sup>+</sup> events because the PB and NAO<sup>+</sup> form a more zonal wave train in this case.</p>


2021 ◽  
pp. 1-68
Author(s):  
Jing Ming ◽  
Jianqi Sun

AbstractThis study investigates the relationship between the central tropical Pacific (CTP) sea surface temperature (SST) and the surface air temperature (SAT) variability un-related to canonical El Niño-Southern Oscillation (ENSO) over mid-to-high latitude Eurasia during boreal summers over the past half-century. The results show that their relationship experienced a decadal shift around the early 1980s. Before the early 1980s, the Eurasian SAT-CTP SST connection was weak; after that time, the relationship became stronger, and the SAT anomalies exhibited a significant wave-like pattern over Eurasia. Such a decadal change in the Eurasian SAT-CTP SST relationship could be attributed to decadal changes in the mean state and variability of CTP SST. The warmer mean state and enhanced SST variability after the early 1980s reinforced the convective activities over the tropical Pacific, leading to significantly anomalous divergence/convergence and Rossby wave sources over the North Pacific. This outcome further excited the wave train propagating along the Northern Hemisphere zonal jet stream to northern Eurasia and then affected the surface heat fluxes and atmospheric circulations over the region, resulting in wave-like SATs over Eurasia. However, during the period before the early 1980s, the CTP SST had a weak impact on the North Pacific atmospheric circulation and was consequently not able to excite the wave train pattern to impact the Eurasian atmospheric circulation and SATs. The physical processes linking the CTP SST and Eurasian SAT are further confirmed by numerical simulations. The results of this study are valuable to understanding the variability of summer Eurasian SATs.


2020 ◽  
Author(s):  
Patrick Martineau ◽  
Hisashi Nakamura ◽  
Yu Kosaka

Abstract. The wintertime influence of El Niño-Southern Oscillation (ENSO) on subseasonal variability is revisited by identifying the dominant mode of covariability between 10–60 day band-pass-filtered surface air temperature (SAT) variability over the North American continent and winter-mean sea surface temperature (SST) over the North Pacific sector. We find, in agreement with previous studies, that La Niña conditions tend to enhance the subseasonal SAT variability over western North America. This modulation of subseasonal variability is achieved through interactions between subseasonal eddies and La Niña-related changes in the winter-mean circulation. Specifically, eastward-propagating quasi-stationary eddies over the North Pacific are more efficient in extracting energy from the mean flow through the baroclinic conversion of energy over the North Pacific sector during La Niña. Changes in the vertical structure of these wave anomalies are crucial to enhance the efficiency of energy conversion via amplified downgradient heat fluxes that energize subseasonal eddy thermal anomalies. The combination of increased subseasonal SAT variability and the cold winter-mean response to La Niña both contribute to enhancing the likelihood of cold extremes over western North America.


2019 ◽  
Vol 19 (14) ◽  
pp. 9081-9095 ◽  
Author(s):  
Laura J. Wilcox ◽  
Nick Dunstone ◽  
Anna Lewinschal ◽  
Massimo Bollasina ◽  
Annica M. L. Ekman ◽  
...  

Abstract. Asian emissions of anthropogenic aerosols and their precursors have increased rapidly since 1980, with half of the increase since the pre-industrial era occurring in this period. Transient experiments with the HadGEM3-GC2 coupled model were designed to isolate the impact of Asian anthropogenic aerosols on global climate in boreal winter. It is found that this increase has resulted in local circulation changes, which in turn have driven decreases in precipitation over China, alongside an intensification of the offshore monsoon flow. No large temperature changes are seen over China. Over India, the opposite response is found, with decreasing temperatures and increasing precipitation. The dominant feature of the local circulation changes is an increase in low-level convergence, ascent, and precipitation over the Maritime Continent, which forms part of a tropical Pacific-wide La Niña-like response. HadGEM3-GC2 also simulates pronounced far-field responses. A decreased meridional temperature gradient in the North Pacific leads to a positive Pacific–North American circulation pattern, with associated temperature anomalies over the North Pacific and North America. Anomalous northeasterly flow over northeast Europe drives advection of cold air into central and western Europe, causing cooling in this region. An anomalous anticyclonic circulation over the North Atlantic causes drying over western Europe. Using a steady-state primitive equation model, LUMA, we demonstrate that these far-field midlatitude responses arise primarily as a result of Rossby waves generated over China, rather than in the equatorial Pacific.


2008 ◽  
Vol 8 (2) ◽  
pp. 5537-5561 ◽  
Author(s):  
J. Liu ◽  
D. L. Mauzerall ◽  
L. W. Horowitz

Abstract. We analyze the effect of varying East Asian (EA) sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2). We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R) relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80%–20% of sulfate at the surface, but at least 50% at 500 hPa. In addition, EA SO2 emissions account for approximately 30%–50% and 10%–20% of North American background sulfate over the western and eastern US, respectively. The contribution of EA sulfate to the western US at the surface is highest in MAM and JJA, but is lowest in DJF. Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence over the North Pacific both at the surface and at 500 mb in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (mostly H2O2). We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be obtained using either sensitivity or tagging techniques. Our findings suggest that future changes in EA sulfur emissions may cause little change in the sulfate induced health impact over downwind continents but SO2 emission reductions may significantly reduce the sulfate related climate cooling over the North Pacific and the United States.


2006 ◽  
Vol 134 (12) ◽  
pp. 3567-3587 ◽  
Author(s):  
Linda M. Keller ◽  
Michael C. Morgan ◽  
David D. Houghton ◽  
Ross A. Lazear

Abstract A climatology of large-scale, persistent cyclonic flow anomalies over the North Pacific was constructed using the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) global reanalysis data for the cold season (November–March) for 1977–2003. These large-scale cyclone (LSC) events were identified as those periods for which the filtered geopotential height anomaly at a given analysis point was at least 100 m below its average for the date for at least 10 days. This study identifies a region of maximum frequency of LSC events at 45°N, 160°W [key point 1 (KP1)] for the entire period. This point is somewhat to the east of regions of maximum height variability noted in previous studies. A second key point (37.5°N, 162.5°W) was defined as the maximum in LSC frequency for the period after November 1988. The authors show that the difference in location of maximum LSC frequency is linked to a climate regime shift at about that time. LSC events occur with a maximum frequency in the period from November through January. A composite 500-hPa synoptic evolution, constructed relative to the event onset, suggests that the upper-tropospheric precursor for LSC events emerges from a quasi-stationary long-wave trough positioned off the east coast of Asia. In the middle and lower troposphere, the events are accompanied by cold thickness advection from a thermal trough over northeastern Asia. The composite mean sea level evolution reveals a cyclone that deepens while moving from the coast of Asia into the central Pacific. As the cyclone amplifies, it slows down in the central Pacific and becomes nearly stationary within a day of onset. Following onset, at 500 hPa, a stationary wave pattern, resembling the Pacific–North American teleconnection pattern, emerges with a ridge immediately downstream (over western North America) and a trough farther downstream (from the southeast coast of the United States into the western North Atlantic). The implications for the resulting sensible weather and predictability of the flow are discussed. An adjoint-derived sensitivity study was conducted for one of the KP1 cases identified in the climatology. The results provide dynamical confirmation of the LSC precursor identification for the events. The upper-tropospheric precursor is seen to play a key role not only in the onset of the lower-tropospheric height falls and concomitant circulation increases, but also in the eastward extension of the polar jet across the Pacific. The evolution of the forecast sensitivities suggest that LSC events are not a manifestation of a modal instability of the time mean flow, but rather the growth of a favorably configured perturbation on the flow.


2018 ◽  
Vol 18 (13) ◽  
pp. 9283-9295 ◽  
Author(s):  
Yu Hoshina ◽  
Yasunori Tohjima ◽  
Keiichi Katsumata ◽  
Toshinobu Machida ◽  
Shin-ichiro Nakaoka

Abstract. Atmospheric oxygen (O2) and carbon dioxide (CO2) variations in the North Pacific were measured aboard a cargo ship, the New Century 2 (NC2), while it cruised between Japan and the United States between December 2015 and November 2016. A fuel cell analyzer and a nondispersive infrared analyzer were used for the measurement of O2 and CO2, respectively. To achieve parts-per-million precision for the O2 measurements, we precisely controlled the flow rates of the sample and reference air introduced into the analyzers and the outlet pressure. A relatively low airflow rate (10 cm3 min−1) was adopted to reduce the consumption rate of the reference gases. In the laboratory, the system achieved measurement precisions of 3.8 per meg for δ(O2 ∕ N2), which is commonly used to express atmospheric O2 variation, and 0.1 ppm for the CO2 mole fraction. After the in situ observation started aboard NC2, we found that the ship's motion caused false wavy variations in the O2 signal with an amplitude of more than several tens of ppm and a period of about 20 s. Although we have not resolved the problem at this stage, hourly averaging considerably suppressed the variation associated with ship motion. Comparison between the in situ observation and flask sampling of air samples aboard NC2 showed that the averaged differences (in situ–flask) and the standard deviations (±1σ) are −2.8 ± 9.4 per meg for δ(O2 ∕ N2) and −0.02 ± 0.33 ppm for the CO2 mole fraction. We compared 1 year of in situ data for atmospheric potential oxygen (APO; O2 +1.1×CO2) obtained from the broad middle-latitude region (140∘ E–130∘ W, 29∘ N–45∘ N) with previous flask sampling data from the North Pacific. This comparison showed that longitudinal differences in the seasonal amplitude of APO, ranging from 51 to 73 per meg, were smaller than the latitudinal differences.


2020 ◽  
Vol 33 (24) ◽  
pp. 10671-10690
Author(s):  
Tianjiao Ma ◽  
Wen Chen ◽  
Hans-F. Graf ◽  
Shuoyi Ding ◽  
Peiqiang Xu ◽  
...  

AbstractThe present study investigates different impacts of the East Asian winter monsoon (EAWM) on surface air temperature (Ts) in North America (NA) during ENSO and neutral ENSO episodes. In neutral ENSO years, the EAWM shows a direct impact on the Ts anomalies in NA on an interannual time scale. Two Rossby wave packets appear over the Eurasian–western Pacific (upstream) and North Pacific–NA (downstream) regions associated with a strong EAWM. Further analysis suggests that the downstream wave packet is caused by reflection of the upstream wave packet over the subtropical western Pacific and amplified over the North Pacific. Also, the East Asian subtropical westerly jet stream (EAJS) is intensified in the central and downstream region over the central North Pacific. Hence, increased barotropic kinetic energy conversion and the interaction between transient eddies and the EAJS tend to maintain the circulation anomaly over the North Pacific. Therefore, a strong EAWM tends to result in warm Ts anomalies in northwestern NA via the downstream wave packet emanating from the central North Pacific toward NA. A weak EAWM tends to induce cold Ts anomalies in western-central NA with a smaller magnitude. However, in ENSO years, an anomalous EAJS is mainly confined over East Asia and does not extend into the central North Pacific. The results confirm that the EAWM has an indirect impact on the Ts anomalies in NA via a modulation of the tropical convection anomalies associated with ENSO. Our results indicate that, for seasonal prediction of Ts anomalies in NA, the influence of the EAWM should be taken into account. It produces different responses in neutral ENSO and in ENSO years.


Sign in / Sign up

Export Citation Format

Share Document