scholarly journals A data assimilation approach to last millennium temperature field reconstruction using a limited high-sensitivity proxy network

2021 ◽  
pp. 1-64
Author(s):  
Jonathan M. King ◽  
Kevin J. Anchukaitis ◽  
Jessica E. Tierney ◽  
Gregory J. Hakim ◽  
Julien Emile-Geay ◽  
...  

AbstractWe use theNorthern Hemisphere Tree-RingNetwork Development (NTREND) tree-ring database to examine the effects of using a small, highly-sensitive proxy network for paleotemperature data assimilation over the last millennium. We first evaluate our methods using pseudo-proxy experiments. These indicate that spatial assimilations using this network are skillful in the extratropical Northern Hemisphere and improve on previous NTREND reconstructions based on Point-by-Point regression. We also find our method is sensitive to climate model biases when the number of sites becomes small. Based on these experiments, we then assimilate the real NTREND network. To quantify model prior uncertainty, we produce 10 separate reconstructions, each assimilating a different climate model. These reconstructions are most dissimilar prior to 1100 CE, when the network becomes sparse, but show greater consistency as the network grows. Temporal variability is also underestimated before 1100 CE. Our assimilation method produces spatial uncertainty estimates and these identify treeline North America and eastern Siberia as regions that would most benefit from development of new millennial-length temperature-sensitive tree-ring records. We compare our multi-model mean reconstruction to five existing paleo-temperature products to examine the range of reconstructed responses to radiative forcing. We find substantial differences in the spatial patterns and magnitudes of reconstructed responses to volcanic eruptions and in the transition between the Medieval epoch and Little Ice Age. These extant uncertainties call for the development of a paleoclimate reconstruction intercomparison framework for systematically examining the consequences of proxy network composition and reconstruction methodology and for continued expansion of tree-ring proxy networks.

2011 ◽  
Vol 7 (1) ◽  
pp. 381-395 ◽  
Author(s):  
C. Junk ◽  
M. Claussen

Abstract. Easter Island, an isolated island in the Southeast Pacific, was settled by the Polynesians probably between 600 and 1200 AD and discovered by the Europeans in 1722 AD. While the Polynesians presumably found a profuse palm woodland on Easter Island, the Europeans faced a landscape dominated by grassland. Scientists have examined potential anthropogenic, biological and climatic induced vegetation changes on Easter Island. Here, we analyze observational climate data for the last decades and climate model results for the period 800–1750 AD to explore potential causes for a climatic-induced vegetation change. A direct influence of the ENSO phenomenon on the climatic parameters of Easter Island could not be found in the model simulations. Furthermore, strong climatic trends from a warm Medieval Period to a Little Ice Age or rapid climatic fluctuations due to large volcanic eruptions were not verifiable for the Easter Island region, although they are detectable in the simulations for many regions world wide. Hence we tentatively conclude that large-scale climate changes in the oceanic region around Easter Island might be too small to explain strong vegetation changes on the island over the last millennium.


2021 ◽  
Author(s):  
Jörg Franke ◽  
Michael Neil Evans ◽  
Andrew Schurer ◽  
Gabriele Clarissa Hegerl

Abstract. The detection and attribution (D&A) of paleoclimatic change to external radiative forcing relies on regression of statistical reconstructions on simulations. However, this procedure may be biased by assumptions of stationarity and univariate linear response of the underlying paleoclimatic observations. Here we perform a D&A study via regression of tree ring width (TRW) observations on TRW simulations which are forward modeled from climate simulations. Temperature and moisture-sensitive TRW simulations show distinct patterns in time and space. Temperature-sensitive TRW observations and simulations are significantly correlated for northern hemisphere averages, and their variation is attributed most closely to volcanically forced simulations. In decadally smoothed temporal fingerprints, we find the observed responses to be significantly larger and/or more persistent than the simulated responses. The pattern of simulated TRW of moisture-limited trees is consistent with the observed anomalies in the two years following major volcanic eruptions. We can for the first time attribute this spatiotemporal fingerprint in moisture limited tree-ring records to volcanic forcing. These results suggest that use of nonlinear and multivariate proxy system models in paleoclimatic detection and attribution studies may permit more realistic, spatially resolved and multivariate fingerprint detection studies, and evaluation of the climate sensitivity to external radiative forcing, than has previously been possible.


2020 ◽  
Author(s):  
Feng Zhu ◽  
Julien Emile-Geay ◽  
Greg Hakim ◽  
Jonathan King ◽  
Kevin Anchukaitis

<p>Explosive volcanism imposes impulse-like radiative forcing on the climate system, providing a natural experiment to study the climate response to perturbation. Previous studies have identified disagreements between paleoclimate reconstructions and climate model simulations (GCMs) with respect to the magnitude and recovery from volcanic cooling, questioning the fidelity of GCMs, reconstructions, or both. Using the paleoenvironmental data assimilation framework of the Last Millennium Reanalysis, this study investigates the causes of the disagreements, using both real and simulated data. We demonstrate that the disagreement may be resolved by assimilating tree-ring density records only, by targeting growing-season temperature instead of annual temperature, and by performing the comparison at proxy locales. Our work suggests that discrepancies between paleoclimate models and data can be largely resolved by accounting for these features of tree-ring proxy networks.</p>


2011 ◽  
Vol 7 (2) ◽  
pp. 579-586 ◽  
Author(s):  
C. Junk ◽  
M. Claussen

Abstract. Rapa Nui, an isolated island in the Southeast Pacific, was settled by the Polynesians most likely around 1200 AD and was discovered by the Europeans in 1722 AD. While the Polynesians presumably found a profuse palm woodland on Rapa Nui, the Europeans faced a landscape dominated by grassland. Scientists have examined potential anthropogenic, biological and climatic induced vegetation changes on Rapa Nui. Here, we analyse observational climate data for the last decades and climate model results for the period 800–1750 AD to explore the potential for a climatic-induced vegetation change. A direct influence of the ENSO phenomenon on the climatic parameters of Rapa Nui could not be found in the model simulations. Furthermore, strong climatic trends from a warm Medieval Period to a Little Ice Age or rapid climatic fluctuations due to large volcanic eruptions were not verifiable for the Rapa Nui region, although they are detectable in the simulations for many regions world wide. Hence, we tentatively conclude that large-scale climate changes in the oceanic region around Rapa Nui might be too small to explain strong vegetation changes on the island over the last millennium.


2020 ◽  
pp. 1-51
Author(s):  
Sara C. Sanchez ◽  
Gregory J. Hakim ◽  
Casey P. Saenger

AbstractScientific understanding of low-frequency tropical Pacific variability, especially responses to perturbations in radiative forcing, suffers from short observational records, sparse proxy networks, and bias in model simulations. Here, we combine the strengths of proxies and models through coral-based paleoclimate data assimilation. We combine coral archives (δ18O, Sr/Ca) with the dynamics, spatial teleconnections, and intervariable relationships of the CMIP5/PMIP3 Past1000 experiments using the Last Millennium Reanalysis data assimilation framework. This analysis creates skillful reconstructions of tropical Pacific temperatures over the observational era. However, during the period of intense volcanism in the early 19th century, southwestern Pacific corals produce El Niño Southern Oscillation (ENSO) reconstructions that are of opposite sign from those from eastern Pacific corals and tree ring records. We systematically evaluate the source of this discrepancy using 1) single-proxy experiments, 2) varied proxy system models (PSMs), and 3) diverse covariance patterns from the Past1000 simulations. We find that individual proxy records and coral PSMs do not significantly contribute to the discrepancy. However, following major eruptions, the southwestern Pacific corals locally record more persistent cold anomalies than found in the Past1000 experiments and canonical ENSO teleconnections to the southwest Pacific strongly control the reconstruction response. Furthermore, using covariance patterns independent of ENSO yield reconstructions consistent with coral archives across the Pacific. These results show that model bias can strongly affect how proxy information is processed in paleoclimate data assimilation. As we illustrate here, model bias influences the magnitude and persistence of the response of the tropical Pacific to volcanic eruptions.


2021 ◽  
Author(s):  
Manmeet Singh ◽  
Raghavan Krishnan ◽  
Bedartha Goswami ◽  
Ayantika Dey Choudhury ◽  
Swapna Panickal ◽  
...  

<p>The coupling between the El Niño–Southern Oscillation (ENSO) and Indian Monsoon (IM) plays a significant role in the summer rainfall over the Indian subcontinent. In this study, we provide insights into the IM variability with regard to the degree of ENSO variability and radiative forcing from large volcanic eruptions (LVEs). Volcanic dust and gas injected into the stratosphere during major eruptions influence the ENSO from seasonal to interannual timescales. However, the effects of LVEs on the ENSO-IM coupling remain unclear. The relationship between ENSO and IM systems in the context of LVEs is examined using a panoply of datasets and advanced statistical analysis techniques in this study. We find that there is a significant enhancement of the phase-synchronization between ENSO and IM oscillations due to increase in angular frequency of ENSO in the last millennium. Twin surrogates-based statistical significance testing is also used to affirm this result and similar evidence is found in the combinations of 14 ENSO and 11 IM paleoclimate proxy records in the last millennium. Bayesian probabilities conditioned with and without LVEs show LVEs lead to a strong ENSO-IM phase-coupling, with the probabilities remaining higher till the fourth year from the eruption. A large-ensemble climate model experiment with and without the 1883 Krakatoa eruption is conducted using the IITM-ESM, and also with varied volcanic radiative forcing (VRF) depending on the evolved state of ENSO. The simulations show that LVEs force the ENSO-IM systems into a coupled state, and increase (decrease) in the VRF leads to an enhanced (decreased) probability of the phase synchronisation of ENSO-IM systems with a high chance of El Niño-IM drought in the year following the LVE. Our results promisingly pave a way not only for improving the seasonal monsoon prediction improvements but also for the regional impact assessment from the proposed geo-engineering activities over the South Asian region.</p>


2019 ◽  
Vol 32 (24) ◽  
pp. 8713-8731 ◽  
Author(s):  
Lucie J. Lücke ◽  
Gabriele C. Hegerl ◽  
Andrew P. Schurer ◽  
Rob Wilson

Abstract Quantifying past climate variation and attributing its causes improves our understanding of the natural variability of the climate system. Tree-ring-based proxies have provided skillful and highly resolved reconstructions of temperature and hydroclimate of the last millennium. However, like all proxies, they are subject to uncertainties arising from varying data quality, coverage, and reconstruction methodology. Previous studies have suggested that biological-based memory processes could cause spectral biases in climate reconstructions. This study determines the effects of such biases on reconstructed temperature variability and the resultant implications for detection and attribution studies. We find that introducing persistent memory, reflecting the spectral properties of tree-ring data, can change the variability of pseudoproxy reconstructions compared to the surrogate climate and resolve certain model–proxy discrepancies. This is especially the case for proxies based on ring-width data. Such memory inflates the difference between the Medieval Climate Anomaly and the Little Ice Age and suppresses and extends the cooling in response to volcanic eruptions. When accounting for memory effects, climate model data can reproduce long-term cooling after volcanic eruptions, as seen in proxy reconstructions. Results of detection and attribution studies show that signals in reconstructions as well as residual unforced variability are consistent with those in climate models when the model fingerprints are adjusted to reflect autoregressive memory as found in tree rings.


1990 ◽  
Vol 34 (1) ◽  
pp. 67-85 ◽  
Author(s):  
Louis A. Scuderi

AbstractRingwidth variations from temperature-sensitive upper timberline sites in the Sierra Nevada show a marked correspondence to the decadal pattern of volcanic sulfate aerosols recorded in a Greenland ice-core acidity profile and a significant negative growth response to individual explosive volcanic events. The appearance of single events in the mid-latitude tree-ring record, in connection with ice-core evidence from the arctic and historical records from the Mediterranean, indicates that the majority of these events represent climatically effective volcanic eruptions, producing temperature decreases on the order of 1°C for up to 2 yr after the initial eruption. Clusters of climatically effective volcanic events may serve as a trigger to glaciation and are consistently associated with lowered ringwidths and late-Holocene glacier advance in the Sierra Nevada. The tree-ring record strongly suggests forcing of solar radiation receipt and temperatures by increased volcanic aerosols, especially during the Recess Peak advances and Matthes (Little Ice Age) advances from 1400 to 1850 A.D. Intervals with an absence of significant volcanic aerosol production or historically documented eruptive activity correspond to intervals of significantly increased indexed ringwidth values, minimal numbers of severe annual negative ringwidth anomalies, and an absence of glacial deposits in the southern Sierra Nevada.


2021 ◽  
Vol 15 (3) ◽  
pp. 1645-1662
Author(s):  
Alan Huston ◽  
Nicholas Siler ◽  
Gerard H. Roe ◽  
Erin Pettit ◽  
Nathan J. Steiger

Abstract. Changes in glacier length reflect the integrated response to local fluctuations in temperature and precipitation resulting from both external forcing (e.g., volcanic eruptions or anthropogenic CO2) and internal climate variability. In order to interpret the climate history reflected in the glacier moraine record, the influence of both sources of climate variability must therefore be considered. Here we study the last millennium of glacier-length variability across the globe using a simple dynamic glacier model, which we force with temperature and precipitation time series from a 13-member ensemble of simulations from a global climate model. The ensemble allows us to quantify the contributions to glacier-length variability from external forcing (given by the ensemble mean) and internal variability (given by the ensemble spread). Within this framework, we find that internal variability is the predominant source of length fluctuations for glaciers with a shorter response time (less than a few decades). However, for glaciers with longer response timescales (more than a few decades) external forcing has a greater influence than internal variability. We further find that external forcing also dominates when the response of glaciers from widely separated regions is averaged. Single-forcing simulations indicate that, for this climate model, most of the forced response over the last millennium, pre-anthropogenic warming, has been driven by global-scale temperature change associated with volcanic aerosols.


Sign in / Sign up

Export Citation Format

Share Document