Development of the Extratropical Response to the Stratospheric Quasi-Biennial Oscillation

2021 ◽  
pp. 1-44
Author(s):  
Jian Rao ◽  
Chaim I. Garfinkel ◽  
Ian P. White

AbstractUsing the Model of an Idealized Moist Atmosphere (MiMA) capable of spontaneously generating a Quasi-Biennial Oscillation (QBO), the gradual establishment of the extratropical response to the QBO is explored. The period and magnitude of the QBO and the magnitude of the polar Holton-Tan (HT) relationship is simulated in a free-running configuration of MiMA, comparable to that in state-of-the-art climate models. In order to isolate mechanisms whereby the QBO influences variability outside of the tropical atmosphere, a series of branch experiments are performed with nudged QBO winds. When easterly QBO winds maximized around 30 hPa are relaxed, an Eliassen-Palm (E-P) flux divergence dipole quickly forms in the extratropical middle stratosphere as a direct response to the tropical meridional circulation, in contrast to the HT mechanism which is associated with wave propagation near the zero wind line. This meridional circulation response to the relaxed QBO winds develops within the first 10 days in seasonally-varying and fixed-seasonal experiments. No detectable changes in upward propagation of waves in the midlatitude lowermost stratosphere are evident for at least 20 days after branching, with the first changes only evident after 20 days in perpetual midwinter and season-varying runs, but after 40 days in perpetual November runs. The polar vortex begins to respond around the 20th day, and subsequently a near-surface response in the Atlantic sector forms in mid-to-late winter runs. These results suggest that the maximum near-surface response observed in mid-to-late winter is not simply due to a random seasonal synchronization of the QBO phase, but also due to the long (short) lag of the surface response to a QBO relaxation in early (mid-to-late) winter.

Author(s):  
Yousuke Yamashita ◽  
Hideharu Akiyoshi ◽  
Masaaki Takahashi

Arctic ozone amount in winter to spring shows large year-to-year variation. This study investigates Arctic spring ozone in relation to the phase of quasi-biennial oscillation (QBO)/the 11-year solar cycle, using satellite observations, reanalysis data, and outputs of a chemistry climate model (CCM) during the period of 1979–2011. For this duration, we found that the composite mean of the Northern Hemisphere high-latitude total ozone in the QBO-westerly (QBO-W)/solar minimum (Smin) phase is slightly smaller than those averaged for the QBO-W/Smax and QBO-E/Smax years in March. An analysis of a passive ozone tracer in the CCM simulation indicates that this negative anomaly is primarily caused by transport. The negative anomaly is consistent with a weakening of the residual mean downward motion in the polar lower stratosphere. The contribution of chemical processes estimated using the column amount difference between ozone and the passive ozone tracer is between 10–20% of the total anomaly in March. The lower ozone levels in the Arctic spring during the QBO-W/Smin years are associated with a stronger Arctic polar vortex from late winter to early spring, which is linked to the reduced occurrence of sudden stratospheric warming in the winter during the QBO-W/Smin years.


2020 ◽  
Vol 20 (11) ◽  
pp. 6259-6271
Author(s):  
Emily M. Gordon ◽  
Annika Seppälä ◽  
Johanna Tamminen

Abstract. Observations from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used to study the effect of energetic particle precipitation (EPP, as proxied by the geomagnetic activity index, Ap) on the Antarctic stratospheric NO2 column in late winter–spring (August–December) during the period from 2005 to 2017. We show that the polar (60–90∘ S) stratospheric NO2 column is significantly correlated with EPP throughout the Antarctic spring, until the breakdown of the polar vortex in November. The strongest correlation takes place during years with the easterly phase of the quasi-biennial oscillation (QBO). The QBO modulation may be a combination of different effects: the QBO is known to influence the amount of the primary NOx source (N2O) via transport from the Equator to the polar region; and the QBO phase also affects polar temperatures, which may provide a link to the amount of denitrification occurring in the polar vortex. We find some support for the latter in an analysis of temperature and HNO3 observations from the Microwave Limb Sounder (MLS, on Aura). Our results suggest that once the background effect of the QBO is accounted for, the NOx produced by EPP significantly contributes to the stratospheric NO2 column at the time and altitudes when the ozone hole is present in the Antarctic stratosphere. Based on our findings, and the known role of NOx as a catalyst for ozone loss, we propose that as chlorine activation continues to decrease in the Antarctic stratosphere, the total EPP-NOx needs be accounted for in predictions of Antarctic ozone recovery.


2017 ◽  
Author(s):  
Lesley J. Gray ◽  
James A. Anstey ◽  
Yoshio Kawatani ◽  
Hua Lu ◽  
Scott Osprey ◽  
...  

Abstract. Teleconnections between the Quasi Biennial Oscillation (QBO) and the Northern Hemisphere zonally-averaged zonal winds, mean sea level pressure (mslp) and tropical precipitation are explored using regression analysis. A novel technique is introduced to separate responses associated with the stratospheric polar vortex from other underlying mechanisms. A previously reported mslp response in January, with a pattern that resembles the positive phase of the North Atlantic Oscillation (NAO) under QBO westerly conditions, is confirmed and found to be primarily associated with a QBO modulation of the stratospheric polar vortex. This mid-winter response is relatively insensitive to the exact height of the maximum QBO westerlies and a maximum response occurs with westerlies over a relatively deep range between 10–70 hPa. Two additional mslp responses are reported, in early winter (December) and late winter (February/March). In contrast to the January response the early and late winter responses show maximum sensitivity to the QBO winds at ~ 20 hPa and ~ 70 hPa but are relatively insensitive to the QBO winds in between (~ 50 hPa). The late winter response is centred over the North Pacific and is associated with QBO influence from the lowermost stratosphere at tropical/subtropical latitudes. The early winter response consists of anomalies over both the North Pacific and Europe, but the mechanism is unclear and requires further investigation. QBO anomalies are found in tropical precipitation amounts and a southward shift of the Inter-tropical Convergence Zone under westerly QBO conditions is also evident.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 582
Author(s):  
Yousuke Yamashita ◽  
Hideharu Akiyoshi ◽  
Masaaki Takahashi

Arctic ozone amount in winter to spring shows large year-to-year variation. This study investigates Arctic spring ozone in relation to the phase of quasi-biennial oscillation (QBO)/the 11-year solar cycle, using satellite observations, reanalysis data, and outputs of a chemistry climate model (CCM) during the period of 1979–2017. For this duration, we found that the composite mean of the Northern Hemisphere high-latitude total ozone in the QBO-westerly (QBO-W)/solar minimum (Smin) phase is slightly smaller than those averaged for the QBO-W/Smax and QBO-E/Smax years in March. An analysis of a passive ozone tracer in the CCM simulation indicates that this negative anomaly is primarily caused by transport. The negative anomaly is consistent with a weakening of the residual mean downward motion in the polar lower stratosphere. The contribution of chemical processes estimated using the column amount difference between ozone and the passive ozone tracer is between 10–20% of the total anomaly in March. The lower ozone levels in the Arctic spring during the QBO-W/Smin years are associated with a stronger Arctic polar vortex from late winter to early spring, which is linked to the reduced occurrence of sudden stratospheric warming in the winter during the QBO-W/Smin years.


2020 ◽  
Vol 33 (11) ◽  
pp. 4787-4813 ◽  
Author(s):  
Jian Rao ◽  
Chaim I. Garfinkel ◽  
Ian P. White

AbstractUsing 16 CMIP5/6 models with a spontaneously generated quasi-biennial oscillation (QBO)-like phenomenon, this study investigates the impact of the QBO on the northern winter stratosphere. Eight of the models simulate a QBO with a period similar to that observed (25–31 months), with other models simulating a QBO period of 20–40 months. Regardless of biases in QBO periodicity, the Holton–Tan relationship can be well simulated in CMIP5/6 models with more planetary wave convergence in the polar stratosphere in easterly QBO winters. This wave polar convergence occurs not only due to the Holton–Tan mechanism, but also in the midlatitude upper stratosphere where an Elissen–Palm (E-P) flux divergence dipole (with poleward E-P flux) is simulated in most models. The wave response in the upper stratosphere appears related to changes in the background circulation through a directly excited meridional–vertical circulation cell above the maximum tropical QBO easterly center. The midlatitude upwelling in this anticlockwise cell is split into two branches, and the north branch descends in the Arctic region and warms the stratospheric polar vortex. Most models underestimate the Arctic stratospheric warming in early winter during easterly QBO. Further analysis suggests that this bias is not due to an overly weak response to a given QBO phase, as the models simulate a realistic response if one focuses on similar QBO phases. Rather, the model bias is due to the too-low frequency of strong QBO winds in the lower stratosphere in early winter simulated by the models.


2017 ◽  
Vol 30 (24) ◽  
pp. 10211-10235 ◽  
Author(s):  
Y. Peings ◽  
H. Douville ◽  
J. Colin ◽  
D. Saint Martin ◽  
Gudrun Magnusdottir

This study explores the wintertime extratropical atmospheric response to Siberian snow anomalies in fall, using observations and two distinct atmospheric general circulation models. The role of the quasi-biennial oscillation (QBO) in modulating this response is discussed by differentiating easterly and westerly QBO years. The remote influence of Siberian snow anomalies is found to be weak in the models, especially in the stratosphere where the “Holton–Tan” effect of the QBO dominates the simulated snow influence on the polar vortex. At the surface, discrepancies between composite analyses from observations and model results question the causal relationship between snow and the atmospheric circulation, suggesting that the atmosphere might have driven snow anomalies rather than the other way around. When both forcings are combined, the simulations suggest destructive interference between the response to positive snow anomalies and easterly QBO (and vice versa), at odds with the hypothesis that the snow–North Atlantic Oscillation/Arctic Oscillation [(N)AO] teleconnection in recent decades has been promoted by the QBO. Although model limitations in capturing the relationship exist, altogether these results suggest that the snow–(N)AO teleconnection may be a stochastic artifact rather than a genuine atmospheric response to snow-cover variability. This study adds to a growing body of evidence suggesting that climate models do not capture a robust and stationary snow–(N)AO relationship. It also highlights the need for extending observations and/or improving models to progress on this matter.


2018 ◽  
Vol 18 (11) ◽  
pp. 8227-8247 ◽  
Author(s):  
Lesley J. Gray ◽  
James A. Anstey ◽  
Yoshio Kawatani ◽  
Hua Lu ◽  
Scott Osprey ◽  
...  

Abstract. Teleconnections between the Quasi Biennial Oscillation (QBO) and the Northern Hemisphere zonally averaged zonal winds, mean sea level pressure (mslp) and tropical precipitation are explored. The standard approach that defines the QBO using the equatorial zonal winds at a single pressure level is compared with the empirical orthogonal function approach that characterizes the vertical profile of the equatorial winds. Results are interpreted in terms of three potential routes of influence, referred to as the tropical, subtropical and polar routes. A novel technique is introduced to separate responses via the polar route that are associated with the stratospheric polar vortex, from the other two routes. A previously reported mslp response in January, with a pattern that resembles the positive phase of the North Atlantic Oscillation under QBO westerly conditions, is confirmed and found to be primarily associated with a QBO modulation of the stratospheric polar vortex. This mid-winter response is relatively insensitive to the exact height of the maximum QBO westerlies and a maximum positive response occurs with westerlies over a relatively deep range between 10 and 70 hPa. Two additional mslp responses are reported, in early winter (December) and late winter (February/March). In contrast to the January response the early and late winter responses show maximum sensitivity to the QBO winds at ∼ 20 and ∼ 70 hPa respectively, but are relatively insensitive to the QBO winds in between (∼ 50 hPa). The late winter response is centred over the North Pacific and is associated with QBO influence from the lowermost stratosphere at tropical/subtropical latitudes in the Pacific sector. The early winter response consists of anomalies over both the North Pacific and Europe, but the mechanism for this response is unclear. Increased precipitation occurs over the tropical western Pacific under westerly QBO conditions, particularly during boreal summer, with maximum sensitivity to the QBO winds at 70 hPa. The band of precipitation across the Pacific associated with the Inter-tropical Convergence Zone (ITCZ) shifts southward under QBO westerly conditions. The empirical orthogonal function (EOF)-based analysis suggests that this ITCZ precipitation response may be particularly sensitive to the vertical wind shear in the vicinity of 70 hPa and hence the tropical tropopause temperatures.


2020 ◽  
Vol 8 ◽  
Author(s):  
Yuanyuan Han ◽  
Fei Xie ◽  
Jiankai Zhang

Stratospheric hydrogen chloride (HCl) is the main stratospheric reservoir of chlorine, deriving from the decomposition of chlorine-containing source gases. Its trend has been used as a metric of ozone depletion or recovery. Using the latest satellite observations, it is found that the significant increase of Northern Hemisphere stratospheric HCl during 2010–2011 can mislead the trend of HCl in recent decades. In agreement with previous studies, HCl increased from 2005 to 2011; however, when the large increase of stratospheric HCl during 2010–2011 is removed, the increasing linear trend from 2005 to 2011 becomes weak and insignificant. In addition, the linear trend of Northern Hemisphere stratospheric HCl from 2005 to 2016 is also weak and insignificant. The significant increase of HCl during 2010–2011 is attributed to a strong northern polar vortex and a weakened residual circulation, which slowed down the transport of HCl between the low-mid latitudes and the high latitudes, leading to an accumulation of HCl in the middle latitudes of the stratosphere. In addition, a weakened residual circulation leads to enhance conversion of chlorine-containing source gases of different lifetimes to HCl, thus increasing the levels of HCl. Simulations by both chemistry transport and chemistry-climate models support the result. It is further found that the joint effect of a La Niña event, the west phase of the quasi-biennial oscillation and positive anomalies of sea surface temperature in the North Pacific is responsible for the strong northern polar vortex and a weakened residual circulation.


2019 ◽  
Author(s):  
Emily Gordon ◽  
Annika Seppälä ◽  
Johanna Tamminen

Abstract. Observations from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used to study the effect of energetic particle precipitation (EPP, as proxied by the geomagnetic activity index Ap) on the Antarctic stratospheric NO2 column in late winter-spring (Aug-Dec) during the years 2005–2017. We show that the polar (60° S–90° S) stratospheric NO2 column is significantly correlated with EPP throughout the Antarctic spring, until the breakdown of the polar vortex in November. The strongest correlation takes place during years with easterly phase of the quasi-biennial oscillation (QBO). We propose that the QBO affects the polar springtime EPP-NOx in two ways: firstly by modulating the amount of the primary NOx source, N2O, transported to the polar region. Secondly, the QBO affects the temperature of the polar vortex and thus the amount of denitrification occurring in the polar vortex, also verified from HNO3 observations from the Microwave Limb Sounder (MLS/Aura). Our results suggest that NOx produced by EPP significantly contributes to the stratospheric NO2 column at the time when the ozone hole is present in the Antarctic stratosphere. Based on our findings, we recommend that as chlorine activation continues to decrease in the Antarctic stratosphere, the total EPP-NOx should be accounted for in predictions of Antarctic ozone recovery.


2021 ◽  
Vol 21 (17) ◽  
pp. 12835-12853
Author(s):  
Viktoria J. Nordström ◽  
Annika Seppälä

Abstract. During September 2019 a minor sudden stratospheric warming took place over the Southern Hemisphere (SH), bringing disruption to the usually stable winter vortex. The mesospheric winds reversed and temperatures in the stratosphere rose by over 50 K. Whilst sudden stratospheric warmings (SSWs) in the SH are rare, with the only major SSW having occurred in 2002, the Northern Hemisphere experiences about six per decade. Amplification of atmospheric waves during winter is thought to be one of the possible triggers for SSWs, although other mechanisms are also possible. Our understanding, however, remains incomplete, especially with regards to SSW occurrence in the SH. Here, we investigate the effect of two equatorial atmospheric modes, the quasi-biennial oscillation (QBO) at 10 hPa and the semiannual oscillation (SAO) at 1 hPa during the SH winters of 2019 and 2002. Using MERRA-2 reanalysis data we find that the easterly wind patterns resembling the two modes merge at low latitudes in the early winter, forming a zero-wind line that stretches from the lower stratosphere into the mesosphere. This influences the meridional wave guide, resulting in easterly momentum being deposited in the polar atmosphere throughout the polar winter, decelerating the westerly winds in the equatorward side of the polar vortex. As the winter progresses, the momentum deposition and wind anomalies descend further down into the stratosphere. We find similar behaviour in other years with early onset SH vortex weakening events. The magnitude of the SAO and the timing of the upper stratospheric (10 hPa) easterly QBO signal was found to be unique in these years when compared to the years with a similar QBO phase. We were able to identify the SSW and weak vortex years from the early winter location of the zero-wind line at 1 hPa together with Eliassen–Palm flux divergence in the upper stratosphere at 40–50∘ S. We propose that this early winter behaviour resulting in deceleration of the polar winds may precondition the southern atmosphere for a later enhanced wave forcing from the troposphere, resulting in an SSW or vortex weakening event. Thus, the early winter equatorial upper stratosphere–mesosphere, together with the polar upper atmosphere, may provide early clues to an imminent SH SSW.


Sign in / Sign up

Export Citation Format

Share Document