scholarly journals North Atlantic Subtropical Mode Waters and Ocean Memory in HadCM3

2006 ◽  
Vol 19 (7) ◽  
pp. 1126-1148 ◽  
Author(s):  
Chris Old ◽  
Keith Haines

Abstract A study of the formation and propagation of volume anomalies in North Atlantic Mode Waters is presented, based on 100 yr of monthly mean fields taken from the control run of the Third Hadley Centre Coupled Ocean–Atmosphere GCM (HadCM3). Analysis of the temporal and spatial variability in the thickness between pairs of isothermal surfaces bounding the central temperature of the three main North Atlantic subtropical mode waters shows that large-scale variability in formation occurs over time scales ranging from 5 to 20 yr. The largest formation anomalies are associated with a southward shift in the mixed layer isothermal distribution, possibly due to changes in the gyre dynamics and/or changes in the overlying wind field and air–sea heat fluxes. The persistence of these anomalies is shown to result from their subduction beneath the winter mixed layer base where they recirculate around the subtropical gyre in the background geostrophic flow. Anomalies in the warmest mode (18°C) formed on the western side of the basin persist for up to 5 yr. They are removed by mixing transformation to warmer classes and are returned to the seasonal mixed layer near the Gulf Stream where the stored heat may be released to the atmosphere. Anomalies in the cooler modes (16° and 14°C) formed on the eastern side of the basin persist for up to 10 yr. There is no clear evidence of significant transformation of these cooler mode anomalies to adjacent classes. It has been proposed that the eastern anomalies are removed through a tropical–subtropical water mass exchange mechanism beneath the trade wind belt (south of 20°N). The analysis shows that anomalous mode water formation plays a key role in the long-term storage of heat in the model, and that the release of heat associated with these anomalies suggests a predictable climate feedback mechanism.

2005 ◽  
Vol 18 (12) ◽  
pp. 1925-1941 ◽  
Author(s):  
Keith Haines ◽  
Chris Old

Abstract A study of thermally driven water mass transformations over 100 yr in the ocean component of the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) is presented. The processes of surface-forced transformations, subduction and mixing, both above and below the winter mixed layer base, are quantified. Subtropical Mode Waters are formed by surface heat fluxes and subducted at more or less the same rate. However, Labrador Seawater and Nordic Seawater classes (the other main subduction classes) are primarily formed by mixing within the mixed layer with very little formation directly from surface heat fluxes. The Subpolar Mode Water classes are dominated by net obduction of water back into the mixed layer from below. Subtropical Mode Water (18°C) variability shows a cycle of formation by surface fluxes, subduction ∼2 yr later, followed by mixing with warmer waters below the winter mixed layer base during the next 3 yr, and finally obduction back into the mixed layer at 21°C, ∼5 yr after the original formation. Surface transformation of Subpolar Mode Waters, ∼12°C, are led by surface transformations of warmer waters by up to 5 yr as water is transferred from the subtropical gyre. They are also led by obduction variability from below the mixed layer, by ∼2 yr. The variability of obduction in Subpolar Mode Waters also appears to be preceded, by 3–5 yr, by variability in subduction of Labrador Sea Waters at ∼6°C. This supports a mechanism in which southward-propagating Labrador seawater anomalies below the subpolar gyre can influence the upper water circulation and obduction into the mixed layer.


Abstract Recent evidence shows that the North Pacific subtropical gyre, the Kuroshio Extension (KE) and Oyashio Extension (OE) fronts have moved poleward in the past few decades. However, changes of the North Pacific Subtropical Fronts (STFs), anchored by the North Pacific subtropical countercurrent in the southern subtropical gyre, remain to be quantified. By synthesizing observations, reanalysis, and eddy-resolving ocean hindcasts, we show that the STFs, especially their eastern part, weakened (20%±5%) and moved poleward (1.6°±0.4°) from 1980 to 2018. Changes of the STFs are modified by mode waters to the north. We find that the central mode water (CMW) (180°-160°W) shows most significant weakening (18%±7%) and poleward shifting (2.4°±0.9°) trends, while the eastern part of the subtropical mode water (STMW) (160°E-180°) has similar but moderate changes (10% ± 8%; 0.9°±0.4°). Trends of the western part of the STMW (140°E-160°E) are not evident. The weakening and poleward shifting of mode waters and STFs are enhanced to the east and are mainly associated with changes of the northern deep mixed layers and outcrop lines—which have a growing northward shift as they elongate to the east. The eastern deep mixed layer shows the largest shallowing trend, where the subduction rate also decreases the most. The mixed layer and outcrop line changes are strongly coupled with the northward migration of the North Pacific subtropical gyre and the KE/OE jets as a result of the poleward expanded Hadley cell, indicating that the KE/OE fronts, mode waters, and STFs change as a whole system.


2021 ◽  
Author(s):  
Leonie Villiger ◽  
Heini Wernli ◽  
Maxi Boettcher ◽  
Martin Hagen ◽  
Franziska Aemisegger

Abstract. Shallow clouds in the trade-wind region over the North Atlantic contribute substantially to the global radiative budget. In the vicinity of the Caribbean island Barbados, they appear in different mesoscale organisation patterns with distinct net cloud radiative effects (CRE). Cloud formation processes in this region are typically controlled by the prevailing large-scale subsidence. However, occasionally weather systems from remote origin cause significant disturbances. This study investigates the complex cloud-circulation interactions during the field campaign EUREC4A (Elucidate the Couplings Between Clouds, Convection and Circulation) from 16 January to 20 February 2020, using a combination of Eulerian and Lagrangian diagnostics. Based on observations and ERA5 reanalyses, we identify the relevant processes and characterise the formation pathways of two moist anomalies above the Barbados Cloud Observatory (BCO), one in the lower (~1000–650 hPa) and one in the middle troposphere (~650–300 hPa). These moist anomalies are associated with strongly negative CRE values and with contrasting long-range transport processes from the extratropics and the tropics, respectively. The low-level moist anomaly is characterised by an unusually thick cloud layer, high precipitation totals and a strongly negative CRE. Its formation is connected to an “extratropical dry intrusion” (EDI) that interacts with a trailing cold front. A quasi-climatological (2010–2020) analysis reveals that EDIs lead to different conditions at the BCO depending on how they interact with the associated cold front. Based on this climatology, we discuss the relevance of the strong large-scale forcing by EDIs for the low-cloud patterns near the BCO and the related CRE. The second case study about the mid-tropospheric moist anomaly is associated with an extended and persistent mixed-phase shelf cloud and the lowest daily CRE value observed during the campaign. Its formation is linked to “tropical mid-level detrainment” (TMD), which refers to detrainment from tropical deep convection near the melting layer. The quasi-climatological analysis shows that TMDs consistently lead to mid-tropospheric moist anomalies over the BCO and that the detrainment height controls the magnitude of the anomaly. However, no systematic relationship was found between the amplitude of this mid-tropospheric moist anomaly and the CRE at the BCO. Overall, this study reveals the important impact of the long-range transport, driven by dynamical processes either in the extratropics or the tropics, on the variability of the vertical structure of moisture and clouds, and on the resulting CRE in the North Atlantic winter trades.


2021 ◽  
Author(s):  
Ilaria Stendardo ◽  
Bruno Buongiorno Nardelli ◽  
Sara Durante

<p>In the subpolar North Atlantic Ocean, Subpolar Mode Waters (SPMWs) are formed during late winter convection following the cyclonic circulation of the subpolar gyre. SPMWs participate in the upper flow of the Atlantic overturning circulation (AMOC) and provide much of the water that is eventually transformed into several components of the North Atlantic deep water (NADW), the cold, deep part of the AMOC. In a warming climate, an increase in upper ocean stratification is expected to lead to a reduced ventilation and a loss of oxygen. Thus, understanding how mode waters are affected by ventilation changes will help us to better understand the variability in the AMOC. In particular, we would like to address how the volume occupied by SPMWs has varied over the last decades due to ventilation changes, and what are the aspects driving the subpolar mode water formation, their interannual variations as well as the impact of the variability in the mixing and subduction and vertical dynamics on ocean deoxygenation. For this purpose, we use two observation-based 3D products from Copernicus Marine Service (CMEMS), the ARMOR3D and the OMEGA3D datasets. The first consists of 3D temperature and salinity fields, from the surface to 1500 m depth, available weekly over a regular grid at 1/4° horizontal resolution from 1993 to present. The second consists of observation-based quasi-geostrophic vertical and horizontal ocean currents with the same temporal and spatial resolution as ARMOR3D.</p>


2011 ◽  
Vol 41 (1) ◽  
pp. 113-129 ◽  
Author(s):  
Eitarou Oka ◽  
Shinya Kouketsu ◽  
Katsuya Toyama ◽  
Kazuyuki Uehara ◽  
Taiyo Kobayashi ◽  
...  

Abstract Temperature and salinity data from Argo profiling floats in the North Pacific during 2003–08 have been analyzed to study the structure of winter mixed layer north of the Kuroshio Extension and the subsurface potential vorticity distribution in the subtropical gyre in relation to the formation and subduction of the central mode water (CMW). In late winter, two zonally elongated bands of deep mixed layer extend at 33°–39° and 39°–43°N, from the east coast of Japan to 160°W. These correspond to the formation region of the lighter variety of CMW (L-CMW) and that of the denser variety of CMW (D-CMW) and the recently identified transition region mode water (TRMW), respectively. In the western part of the L-CMW and D-CMW–TRMW formation regions west of 170°E, the winter mixed layer becomes deeper and lighter to the east (i.e., to the downstream). As a result, the formed mode water is reentrained into the mixed layer in the farther east in the following winter and modified to the lighter water and is thus unable to be subducted to the permanent pycnocline. In the eastern part of the formation regions between 170°E and 160°W, on the other hand, the winter mixed layer becomes shallower and lighter to the east. From these areas, the L-CMW with potential density of 25.7–26.2 kg m−3 and the D-CMW–TRMW (mostly the former) of 26.1–26.4 kg m−3 are subducted to the permanent pycnocline, and they are then advected anticyclonically in the subtropical gyre. These results imply that during the analysis period large-scale subduction to the permanent pycnocline occurs in the density range up to 26.4 kg m−3 in the open North Pacific, whereas the winter mixed layer density reaches the maximum of 26.6 kg m−3. This is supported by the vertical distribution of apparent oxygen utilization in a hydrographic section in the subtropical gyre.


2012 ◽  
Vol 69 (5) ◽  
pp. 802-808 ◽  
Author(s):  
Karin Margretha H. Larsen ◽  
Hjálmar Hátún ◽  
Bogi Hansen ◽  
Regin Kristiansen

Abstract Larsen, K. M. H., Hátún, H., Hansen, B., and Kristiansen, R. 2012. Atlantic water in the Faroe area: sources and variability. – ICES Journal of Marine Science, 69: 802–808. The inflow of Atlantic water (AW) across the Greenland–Scotland Ridge and into the Nordic Seas controls both physical and biological conditions in the northeastern Atlantic through its transport of heat, salt, and other properties. The two main branches of this flow pass through the Iceland–Faroe Gap and the Faroe–Shetland Channel, respectively. Regular monitoring along four standard sections crossing these flows provides time-series of the AW temperature and salinity variability since the late 1980s. The analysis of these series presented shows a persistent increasing trend in both temperature and salinity, modulated by smaller subdecadal oscillations. Using supplementary data sources, the previously established link between the large-scale circulation in the North Atlantic and Atlantic inflow properties is supported. Salinity is also impacted by large changes in the Bay of Biscay source waters, and upstream air–sea heat fluxes modulate temperature. Relationships between changes in transport and associated residence time, and the modifying strength of the air–sea interaction and mixing, are also discussed.


2008 ◽  
Vol 21 (20) ◽  
pp. 5402-5416 ◽  
Author(s):  
Zhengyu Liu ◽  
Na Wen

Abstract The equilibrium feedback assessment (EFA) is combined with the singular value decomposition (SVD) to assess the large-scale feedback modes from a lower boundary variability field onto an atmospheric field. The leading EFA-SVD modes are the optimal feedback modes, with the lower boundary forcing patterns corresponding to those that generate the largest atmospheric responses, and therefore provide upper bounds of the feedback response. The application of EFA-SVD to an idealized coupled ocean–atmosphere model demonstrates that EFA-SVD is able to extract the leading feedback modes successfully. Furthermore, these large-scale modes are the least sensitive to sampling errors among all the feedback processes and therefore are the most robust for statistical estimation. The EFA-SVD is then applied to the observed North Atlantic ocean–atmosphere system for the assessment of the sea surface temperature (SST) feedback on the surface heat flux and the geopotential height, respectively. The dominant local negative feedback of SST on heat flux is confirmed, with an upper bound of about 40 W m−2 K−1 for basin-scale anomalies. The SST also seems to exert a strong feedback on the atmospheric geopotential height: the optimal SST forcing has a dipole pattern that generates an optimal response of a North Atlantic Oscillation (NAO) pattern, with an upper bound of about 70 m K−1 at 500 hPa. Further issues on the EFA-SVD analysis are also discussed.


2014 ◽  
Vol 44 (5) ◽  
pp. 1354-1371 ◽  
Author(s):  
S. F. Gary ◽  
M. S. Lozier ◽  
Y.-O. Kwon ◽  
J. J. Park

Abstract North Atlantic Subtropical Mode Water, also known as Eighteen Degree Water (EDW), has the potential to store heat anomalies through its seasonal cycle: the water mass is in contact with the atmosphere in winter, isolated from the surface for the rest of the year, and reexposed the following winter. Though there has been recent progress in understanding EDW formation processes, an understanding of the fate of EDW following formation remains nascent. Here, particles are launched within the EDW of an eddy-resolving model, and their fate is tracked as they move away from the formation region. Particles in EDW have an average residence time of ~10 months, they follow the large-scale circulation around the subtropical gyre, and stratification is the dominant criteria governing the exit of particles from EDW. After sinking into the layers beneath EDW, particles are eventually exported to the subpolar gyre. The spreading of particles is consistent with the large-scale potential vorticity field, and there are signs of a possible eddy-driven mean flow in the southern portion of the EDW domain. The authors also show that property anomalies along particle trajectories have an average integral time scale of ~3 months for particles that are in EDW and ~2 months for particles out of EDW. Finally, it is shown that the EDW turnover time for the model in an Eulerian frame (~3 yr) is consistent with the turnover time computed from the Lagrangian particles provided that the effects of exchange between EDW and the surrounding waters are included.


2010 ◽  
Vol 23 (10) ◽  
pp. 2651-2670 ◽  
Author(s):  
Jeffrey Shaman ◽  
R. M. Samelson ◽  
Eric Skyllingstad

Abstract The intraseasonal variability of turbulent surface heat fluxes over the Gulf Stream extension and subtropical mode water regions of the North Atlantic, and long-term trends in these fluxes, are explored using NCEP–NCAR reanalysis. Wintertime sensible and latent heat fluxes from these surface waters are characterized by episodic high flux events due to cold air outbreaks from North America. Up to 60% of the November–March (NDJFM) total sensible heat flux and 45% of latent heat flux occurs on these high flux days. On average 41% (34%) of the total NDJFM sensible (latent) heat flux takes place during just 17% (20%) of the days. Over the last 60 years, seasonal NDJFM sensible and latent heat fluxes over the Climate Variability and Predictability (CLIVAR) Mode Water Dynamic Experiment (CLIMODE) region have increased owing to an increased number of high flux event days. The increased storm frequency has altered average wintertime temperature conditions in the region, producing colder surface air conditions over the North American eastern seaboard and Labrador Sea and warmer temperatures over the Sargasso Sea. These temperature changes have increased low-level vertical wind shear and baroclinicity along the North Atlantic storm track over the last 60 years and may further favor the trend of increasing storm frequency over the Gulf Stream extension and adjacent region.


2014 ◽  
Vol 11 (12) ◽  
pp. 17391-17411 ◽  
Author(s):  
J. Karstensen ◽  
B. Fiedler ◽  
F. Schütte ◽  
P. Brandt ◽  
A. Körtzinger ◽  
...  

Abstract. The intermittent appearances of low oxygen environments are a particular thread for marine ecosystems. Here we present first observations of unexpected low (<2 μmol kg-1) oxygen environments in the open waters of the eastern tropical North Atlantic, a region where typically oxygen concentration does not fall below 40 μmol kg-1. The low oxygen zones are created just below the mixed-layer, in the euphotic zone of high productive cyclonic and anticyclonic-modewater eddies. A dynamic boundary is created from the large swirl-velocity against the weak background flow. Hydrographic properties within the eddies are kept constant over periods of several months, while net respiration is elevated by a factor of 3 to 5 reducing the oxygen content. We repeatedly observed low oxygen eddies in the region. The direct impact on the ecosystem is evident from anomalous backscatter behaviour. Satellite derived global eddy statistics do not allow to estimate the large-scale impact of the eddies because their vertical structure (mixed-layer depth, euphotic depth) play a key role in creating the low oxygen environment.


Sign in / Sign up

Export Citation Format

Share Document