scholarly journals Trends in Global Cloud Cover in Two Decades of HIRS Observations

2005 ◽  
Vol 18 (15) ◽  
pp. 3021-3031 ◽  
Author(s):  
Donald Wylie ◽  
Darren L. Jackson ◽  
W. Paul Menzel ◽  
John J. Bates

Abstract The frequency of cloud detection and the frequency with which these clouds are found in the upper troposphere have been extracted from NOAA High Resolution Infrared Radiometer Sounder (HIRS) polar-orbiting satellite data from 1979 to 2001. The HIRS/2 sensor was flown on nine satellites from the Television Infrared Observation Satellite-Next Generation (TIROS-N) through NOAA-14, forming a 22-yr record. Carbon dioxide slicing was used to infer cloud amount and height. Trends in cloud cover and high-cloud frequency were found to be small in these data. High clouds show a small but statistically significant increase in the Tropics and the Northern Hemisphere. The HIRS analysis contrasts with the International Satellite Cloud Climatology Project (ISCCP), which shows a decrease in both total cloud cover and high clouds during most of this period.

2007 ◽  
Vol 20 (19) ◽  
pp. 4968-4981 ◽  
Author(s):  
Donald Wylie ◽  
Edwin Eloranta ◽  
James D. Spinhirne ◽  
Steven P. Palm

Abstract The cloud dataset from the Geoscience Laser Altimeter System (GLAS) lidar on the Ice, Cloud, and Land Elevation Satellite (ICESat) spacecraft is compared to the cloud analysis of the Wisconsin NOAA High Resolution Infrared Radiation Sounder (HIRS) Pathfinder. This is the first global lidar dataset from a spacecraft of extended duration that can be compared to the HIRS climatology. It provides an excellent source of cloud information because it is more sensitive to clouds that are difficult to detect, namely, thin cirrus and small boundary layer clouds. The second GLAS data collection period from 1 October to 16 November 2003 was used for this comparison, and a companion dataset of the same days were analyzed with HIRS. GLAS reported cloud cover of 0.70 while HIRS reported slightly higher cloud cover of 0.75 for this period. The locations where HIRS overreported cloud cover were mainly in the Arctic and Antarctic Oceans and parts of the Tropics. GLAS also confirms that upper-tropospheric clouds (above 6.6 km) cover about 0.33 of the earth, similar to the reports from HIRS data. Generally, the altitude of the cloud tops reported by GLAS is, on average, higher than HIRS by 0.4 to 4.5 km. The largest differences were found in the Tropics, over 4 km, while in midlatitudes average differences ranged from 0.4 to 2 km. Part of this difference in averaged cloud heights comes from GLAS finding more high cloud coverage in the Tropics, 5% on average but >13% in some areas, which weights its cloud top average more toward the high clouds than the HIRS. The diffuse character of the upper parts of high clouds over tropical oceans is also a cause for the difference in reported cloud heights. Statistics on cloud sizes also were computed from GLAS data to estimate the errors in cloud cover reported by HIRS from its 20-km field-of-view (FOV) size. Smaller clouds are very common with one-half of all clouds being <41 km in horizontal size. But, clouds <41 km cover only 5% of the earth. Cloud coverage is dominated by larger clouds with one-half of the coverage coming from clouds >1000 km. GLAS cloud size statistics also show that HIRS possibly overreports some cloud forms by 2%–3%. Looking at groups of GLAS data 21 km long to simulate the HIRS FOV, the authors found that ∼5% are partially filled with cloud. Since HIRS does not account for the part of the FOV without cloud, it will overreport the coverage of these clouds. However, low-altitude and optically thin clouds will not be reported by HIRS if they are so small that they do not affect the upwelling radiation in the HIRS FOV enough to trigger the threshold for cloud detection. These errors are partially offing.


2010 ◽  
Vol 10 (3) ◽  
pp. 8247-8296
Author(s):  
C. J. Stubenrauch ◽  
S. Cros ◽  
A. Guignard ◽  
N. Lamquin

Abstract. We present a six-year global climatology of cloud properties, obtained from observations of the Atmospheric Infrared Sounder (AIRS) onboard the NASA Aqua satellite. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) combined with CloudSat observations, both missions launched as part of the A-Train in 2006, provide a unique opportunity to evaluate the retrieved AIRS cloud properties such as cloud amount and height as well as to explore the vertical structure of different cloud types. AIRS-LMD cloud detection agrees with CALIPSO about 85% over ocean and about 75% over land. Global cloud amount has been estimated as about 66% to 74%, depending on the weighting of not cloudy AIRS footprints by partial cloud cover (0 or 0.3). 40% of all clouds are high clouds, and about 44% of all clouds are single layer low-level clouds. The "radiative" cloud height determined by the AIRS-LMD retrieval corresponds well to the height of the maximum backscatter signal and of the "apparent middle" of the cloud. Whereas the real cloud thickness of high opaque clouds often fills the whole troposphere, their "apparent" cloud thickness (at which optical depth reaches about 5) is on average only 2.5 km. The real geometrical thickness of optically thin cirrus as identified by AIRS-LMD is identical to the "apparent" cloud thickness with an average of about 2.5 km in the tropics and midlatitudes. High clouds in the tropics have slightly more diffusive cloud tops than at higher latitudes. In general, the depth of the maximum backscatter signal increases nearly linearly with increasing "apparent" cloud thickness. For the same "apparent" cloud thickness optically thin cirrus show a maximum backscatter about 10% deeper inside the cloud than optically thicker clouds. We also show that only the geometrically thickest opaque clouds and (the probably surrounding anvil) cirrus penetrate the stratosphere in the tropics.


2010 ◽  
Vol 10 (15) ◽  
pp. 7197-7214 ◽  
Author(s):  
C. J. Stubenrauch ◽  
S. Cros ◽  
A. Guignard ◽  
N. Lamquin

Abstract. We present a six-year global climatology of cloud properties, obtained from observations of the Atmospheric Infrared Sounder (AIRS) onboard the NASA Aqua satellite. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) combined with CloudSat observations, both missions launched as part of the A-Train in 2006, provide a unique opportunity to evaluate the retrieved AIRS cloud properties such as cloud amount and height. In addition, they permit to explore the vertical structure of different cloud types. AIRS-LMD cloud detection agrees with CALIPSO about 85% over ocean and about 75% over land. Global cloud amount has been estimated from 66% to 74%, depending on the weighting of not cloudy AIRS footprints by partial cloud cover from 0 to 0.3. 42% of all clouds are high clouds, and about 42% of all clouds are single layer low-level clouds. The "radiative" cloud height determined by the AIRS-LMD retrieval corresponds well to the height of the maximum backscatter signal and of the "apparent middle" of the cloud. Whereas the real cloud thickness of high opaque clouds often fills the whole troposphere, their "apparent" cloud thickness (at which optical depth reaches about 5) is on average only 2.5 km. The real geometrical thickness of optically thin cirrus as identified by AIRS-LMD is identical to the "apparent" cloud thickness with an average of about 2.5 km in the tropics and midlatitudes. High clouds in the tropics have slightly more diffusive cloud tops than at higher latitudes. In general, the depth of the maximum backscatter signal increases nearly linearly with increasing "apparent" cloud thickness. For the same "apparent" cloud thickness optically thin cirrus show a maximum backscatter about 10% deeper inside the cloud than optically thicker clouds. We also show that only the geometrically thickest opaque clouds and (the probably surrounding anvil) cirrus penetrate the stratosphere in the tropics.


2020 ◽  
Vol 12 (23) ◽  
pp. 3946
Author(s):  
Pasquale Sellitto ◽  
Silvia Bucci ◽  
Bernard Legras

Clouds in the tropics have an important role in the energy budget, atmospheric circulation, humidity, and composition of the tropical-to-global upper-troposphere–lower-stratosphere. Due to its non-sun-synchronous orbit, the Cloud–Aerosol Transport System (CATS) onboard the International Space Station (ISS) provided novel information on clouds from space in terms of overpass time in the period of 2015–2017. In this paper, we provide a seasonally resolved comparison of CATS characterization of high clouds (between 13 and 18 km altitude) in the tropics with well-established CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation) data, both in terms of clouds’ occurrence and cloud optical properties (optical depth). Despite the fact that cloud statistics for CATS and CALIOP are generated using intrinsically different local overpass times, the characterization of high clouds occurrence and optical properties in the tropics with the two instruments is very similar. Observations from CATS underestimate clouds occurrence (up to 80%, at 18 km) and overestimate the occurrence of very thick clouds (up to 100% for optically very thick clouds, at 18 km) at higher altitudes. Thus, the description of stratospheric overshoots with CATS and CALIOP might be different. While this study hints at the consistency of CATS and CALIOP clouds characterizaton, the small differences highlighted in this work should be taken into account when using CATS for estimating cloud properties and their variability in the tropics.


1998 ◽  
Vol 16 (3) ◽  
pp. 331-341 ◽  
Author(s):  
J. Massons ◽  
D. Domingo ◽  
J. Lorente

Abstract. A cloud-detection method was used to retrieve cloudy pixels from Meteosat images. High spatial resolution (one pixel), monthly averaged cloud-cover distribution was obtained for a 1-year period. The seasonal cycle of cloud amount was analyzed. Cloud parameters obtained include the total cloud amount and the percentage of occurrence of clouds at three altitudes. Hourly variations of cloud cover are also analyzed. Cloud properties determined are coherent with those obtained in previous studies.Key words. Cloud cover · Meteosat


2008 ◽  
Vol 8 (4) ◽  
pp. 13479-13505 ◽  
Author(s):  
N. H. Schade ◽  
A. Macke ◽  
H. Sandmann ◽  
C. Stick

Abstract. The detection of cloudiness is investigated by means of partial and total cloud amount estimations from pyrgeometer radiation measurements and all-sky imager observations. The measurements have been performed in Westerland, a seaside resort on the North Sea island of Sylt, Germany, during summer 2005. An improvement to previous studies on this subject results from the fact that for the first time partial cloud amount (PCA), defined as total cloud amounts without high clouds, calculations from longwave downward radiation (LDR) according to the APCADA-Algorithm (Dürr and Philipona, 2004) are validated against both human observations from the German Weather Service DWD at the nearby airport of Sylt and digital all-sky imaging. Differences between the resulting total cloud amounts (TCA's), defined as total cloud amount for all-cloud situations, derived from the camera images and from human observations are within ±1 octa in 72% and within ±2 octa in 85% of the cases. Compared to human observations PCA measurements according to APCADA underestimate the observed cloud cover in 47% of all cases and the differences are within ±1 octa in 60% and ±2 octa in 74% of all cases. Since high cirrus clouds can not be derived from LDR, separate comparisons for all cases without high clouds have been performed showing an agreement within ±1(2) octa in 73(90)% for PCA and also for camera derived TCA. For this coastal mid-latitude site under investigation we find similar though slightly smaller agreements to human observations as reported in Dürr and Philipona (2004). Though limited to day-time the cloud cover retrievals from the sky imager are not much affected by cirrus clouds and provide a more reliable cloud climatology for all-cloud conditions than APCADA.


2016 ◽  
Vol 113 (32) ◽  
pp. 8927-8932 ◽  
Author(s):  
Sandrine Bony ◽  
Bjorn Stevens ◽  
David Coppin ◽  
Tobias Becker ◽  
Kevin A. Reed ◽  
...  

General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, we show that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction. When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation.


2016 ◽  
Vol 29 (6) ◽  
pp. 2015-2021 ◽  
Author(s):  
Melissa Free ◽  
Bomin Sun ◽  
Hye Lim Yoo

Abstract A homogeneity-adjusted dataset of total cloud cover from weather stations in the contiguous United States is compared with cloud cover in four state-of-the-art global reanalysis products: the Climate Forecast System Reanalysis from NCEP, the Modern-Era Retrospective Analysis for Research and Applications from NASA, ERA-Interim from ECMWF, and the Japanese 55-year Reanalysis Project from the Japan Meteorological Agency. The reanalysis products examined in this study generally show much lower cloud amount than visual weather station data, and this underestimation appears to be generally consistent with their overestimation of downward surface shortwave fluxes when compared with surface radiation data from the Surface Radiation Network. Nevertheless, the reanalysis products largely succeed in simulating the main aspects of interannual variability of cloudiness for large-scale means, as measured by correlations of 0.81–0.90 for U.S. mean time series. Trends in the reanalysis datasets for the U.S. mean for 1979–2009, ranging from −0.38% to −1.8% decade−1, are in the same direction as the trend in surface data (−0.50% decade−1), but further effort is needed to understand the discrepancies in their magnitudes.


2008 ◽  
Vol 21 (18) ◽  
pp. 4799-4810 ◽  
Author(s):  
Axel J. Schweiger ◽  
Ron W. Lindsay ◽  
Steve Vavrus ◽  
Jennifer A. Francis

Abstract The connection between sea ice variability and cloud cover over the Arctic seas during autumn is investigated by analyzing the 40-yr ECMWF Re-Analysis (ERA-40) products and the Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) Polar Pathfinder satellite datasets. It is found that cloud cover variability near the sea ice margins is strongly linked to sea ice variability. Sea ice retreat is linked to a decrease in low-level cloud amount and a simultaneous increase in midlevel clouds. This pattern is apparent in both data sources. Changes in cloud cover can be explained by changes in the atmospheric temperature structure and an increase in near-surface temperatures resulting from the removal of sea ice. The subsequent decrease in static stability and deepening of the atmospheric boundary layer apparently contribute to the rise in cloud level. The radiative effect of this change is relatively small, as the direct radiative effects of cloud cover changes are compensated for by changes in the temperature and humidity profiles associated with varying ice conditions.


2006 ◽  
Vol 19 (21) ◽  
pp. 5531-5553 ◽  
Author(s):  
C. J. Stubenrauch ◽  
A. Chédin ◽  
G. Rädel ◽  
N. A. Scott ◽  
S. Serrar

Abstract Eight years of cloud properties retrieved from Television Infrared Observation Satellite-N (TIROS-N) Observational Vertical Sounder (TOVS) observations aboard the NOAA polar orbiting satellites are presented. The relatively high spectral resolution of these instruments in the infrared allows especially reliable cirrus identification day and night. This dataset therefore provides complementary information to the International Satellite Cloud Climatology Project (ISCCP). According to this dataset, cirrus clouds cover about 27% of the earth and 45% of the Tropics, whereas ISCCP reports 19% and 25%, respectively. Both global datasets agree within 5% on the amount of single-layer low clouds, at 30%. From 1987 to 1995, global cloud amounts remained stable to within 2%. The seasonal cycle of cloud amount is in general stronger than its diurnal cycle and it is stronger than the one of effective cloud amount, the latter the relevant variable for radiative transfer. Maximum effective low cloud amount over ocean occurs in winter in SH subtropics in the early morning hours and in NH midlatitudes without diurnal cycle. Over land in winter the maximum is in the early afternoon, accompanied in the midlatitudes by thin cirrus. Over tropical land and in the other regions in summer, the maximum of mesoscale high opaque clouds occurs in the evening. Cirrus also increases during the afternoon and persists during night and early morning. The maximum of thin cirrus is in the early afternoon, then decreases slowly while cirrus and high opaque clouds increase. TOVS extends information of ISCCP during night, indicating that high cloudiness, increasing during the afternoon, persists longer during night in the Tropics and subtropics than in midlatitudes. A comparison of seasonal and diurnal cycle of high cloud amount between South America, Africa, and Indonesia during boreal winter has shown strong similarities between the two land regions, whereas the Indonesian islands show a seasonal and diurnal behavior strongly influenced by the surrounding ocean. Deeper precipitation systems over Africa than over South America do not seem to be directly reflected in the horizontal coverage and mesoscale effective emissivity of high clouds.


Sign in / Sign up

Export Citation Format

Share Document