scholarly journals Cluster Analysis of the Seasonal Forecast Skill of the NCEP SFM over the Pacific–North America Sector

2006 ◽  
Vol 19 (1) ◽  
pp. 123-138 ◽  
Author(s):  
Tosiyuki Nakaegawa ◽  
Masao Kanamitsu

Abstract Cluster analysis was used to study seasonal forecast skills of the winter season NCEP seasonal forecast model (SFM) hindcasts over the Pacific–North America (PNA) sector. Two skill scores based on cluster mean and ensemble mean are compared. It was shown that the anomaly correlation coefficients (ACCs) of cluster mean are generally higher than those of the simple ensemble mean. The results indicated that the skill was affected by the existence of multiple atmospheric regimes. Multiple regimes tend to appear more often in near-normal tropical Pacific sea surface temperature (SST) episodes, while a single regime tends to appear during warm/cold episodes. The dissimilarity among the cluster members is small and the number of the dominant cluster members is also small when the tropical SST anomaly is large, suggesting that the external forcing reduces the frequency of occurrence of the multiple regimes. The ACC improvements from the ensemble mean ACCs to the cluster mean ACCs are statistically significant. Thus, the cluster mean can be used as a supplementary tool for seasonal forecasting.

2021 ◽  
Author(s):  
Jonathan D. Beverley ◽  
Steven J. Woolnough ◽  
Laura H. Baker ◽  
Stephanie J. Johnson ◽  
Antje Weisheimer ◽  
...  

AbstractThe circumglobal teleconnection (CGT) is an important mode of circulation variability, with an influence across many parts of the northern hemisphere. Here, we examine the excitation mechanisms of the CGT in the ECMWF seasonal forecast model, and the relationship between the Indian summer monsoon (ISM), the CGT and the extratropical northern hemisphere circulation. Results from relaxation experiments, in which the model is corrected to reanalysis in specific regions, suggest that errors over northwest Europe are more important in inhibiting the model skill at representing the CGT, in addition to northern hemisphere skill more widely, than west-central Asia and the ISM region, although the link between ISM precipitation and the extratropical circulation is weak in all experiments. Thermal forcing experiments in the ECMWF model, in which a heating is applied over India, suggest that the ISM does force an extratropical Rossby wave train, with upper tropospheric anticyclonic anomalies over east Asia, the North Pacific and North America associated with increased ISM heating. However, this eastward-propagating branch of the wave train does not project into Europe, and the response there occurs largely through westward-propagating Rossby waves. Results from barotropic model experiments show a response that is highly consistent with the seasonal forecast model, with similar eastward- and westward-propagating Rossby waves. This westward-propagating response is shown to be important in the downstream reinforcement of the wave train between Asia and North America.


2020 ◽  
Author(s):  
Lisa Degenhardt ◽  
Gregor Leckebusch ◽  
Adam Scaife

<p>Severe Atlantic winter storms are affecting densely populated regions of Europe (e.g. UK, France, Germany, etc.). Consequently, different parts of the society, financial industry (e.g., insurance) and last but not least the general public are interested in skilful forecasts for the upcoming storm season (usually December to March). To allow for a best possible use of steadily improved seasonal forecasts, the understanding which factors contribute to realise forecast skill is essential and will allow for an assessment whether to expect a forecast to be skilful or not.</p><p>This study analyses the predictability of the seasonal forecast model of the UK MetOffice, the GloSea5. Windstorm events are identified and tracked following Leckebusch et al. (2008) via the exceedance of the 98<sup>th</sup> percentile of the near surface wind speed.</p><p>Seasonal predictability of windstorm frequency in comparison to observations (based e.g., on ERA5 reanalysis) are calculated and different statistical methods (skill scores) are compared.</p><p>Large scale patterns (e.g., NAO, AO, EAWR, etc.) and dynamical factors (e.g., Eady Growth Rate) are analysed and their predictability is assessed in comparison to storm frequency forecast skill. This will lead to an idea how the forecast skill of windstorms is depending on the forecast skill of forcing factors conditional to the phase of large-scale variability modes. Thus, we deduce information, which factors are most important to generate seasonal forecast skill for severe extra-tropical windstorms.</p><p>The results can be used to get a better understanding of the resulting skill for the upcoming windstorm season.</p>


2016 ◽  
Vol 13 ◽  
pp. 51-55 ◽  
Author(s):  
Christian Viel ◽  
Anne-Lise Beaulant ◽  
Jean-Michel Soubeyroux ◽  
Jean-Pierre Céron

Abstract. The FP7 project EUPORIAS was a great opportunity for the climate community to co-design with stakeholders some original and innovative climate services at seasonal time scales. In this framework, Météo-France proposed a prototype that aimed to provide to water resource managers some tailored information to better anticipate the coming season. It is based on a forecasting system, built on a refined hydrological suite, forced by a coupled seasonal forecast model. It particularly delivers probabilistic river flow prediction on river basins all over the French territory. This paper presents the work we have done with "EPTB Seine Grands Lacs" (EPTB SGL), an institutional stakeholder in charge of the management of 4 great reservoirs on the upper Seine Basin. First, we present the co-design phase, which means the translation of classical climate outputs into several indices, relevant to influence the stakeholder's decision making process (DMP). And second, we detail the evaluation of the impact of the forecast on the DMP. This evaluation is based on an experiment realised in collaboration with the stakeholder. Concretely EPTB SGL has replayed some past decisions, in three different contexts: without any forecast, with a forecast A and with a forecast B. One of forecast A and B really contained seasonal forecast, the other only contained random forecasts taken from past climate. This placebo experiment, realised in a blind test, allowed us to calculate promising skill scores of the DMP based on seasonal forecast in comparison to a classical approach based on climatology, and to EPTG SGL current practice.


1996 ◽  
Vol 74 (11) ◽  
pp. 2062-2069 ◽  
Author(s):  
Jeffrey V. Wells ◽  
Kenneth V. Rosenberg ◽  
Diane L. Tessaglia ◽  
André A. Dhondt

The Varied Thrush (Ixoreus naevius), an endemic species of the Pacific Northwest of North America, shows dramatic year-to-year changes in wintering abundance. These changes have not, however, been systematically examined using standardized data. Using Project FeederWatch data from 1988–1989 to 1994–1995 we found that Varied Thrushes showed a biennial cyclic change in abundance within most of their normal wintering range. This cyclic pattern was also evident in Christmas Bird Count and Breeding Bird Survey data from the same time period. There was no difference in the extent or location of the winter range or in the distribution of elevations of Varied Thrush records between years of high and low abundance. More feeders had single Varied Thrushes in years of high abundance than in years of low abundance. Longer term (1969–1970 to 1994–1995) Christmas Bird Count and Breeding Bird Survey data showed a more variable pattern, with abundance peaks every 2–3 years. The number of vagrant Varied Thrushes from eastern North America reported in Audubon Field Notes winter season reports was not correlated with abundance in the normal wintering and breeding areas but was correlated with the number of Varied Thrushes tallied on southern California Christmas Bird Counts. These results suggest that patterns of vagrancy in Varied Thrushes are largely independent of population changes within the normal wintering area.


2006 ◽  
Author(s):  
J.K. Madsen ◽  
D.J. Thorkelson ◽  
R.M. Friedman ◽  
D.D. Marshall

Geosphere, February 2006, v. 2, p. 11-34, doi: 10.1130/GES00020.1. Movie 1 - Tectonic model for the Pacific Basin and northwestern North America from 53 Ma to 39 Ma. The file size is 1.3 MB.


2021 ◽  
Author(s):  
Nicola Cortesi ◽  
Verónica Torralba ◽  
Llorenó Lledó ◽  
Andrea Manrique-Suñén ◽  
Nube Gonzalez-Reviriego ◽  
...  

AbstractIt is often assumed that weather regimes adequately characterize atmospheric circulation variability. However, regime classifications spanning many months and with a low number of regimes may not satisfy this assumption. The first aim of this study is to test such hypothesis for the Euro-Atlantic region. The second one is to extend the assessment of sub-seasonal forecast skill in predicting the frequencies of occurrence of the regimes beyond the winter season. Two regime classifications of four regimes each were obtained from sea level pressure anomalies clustered from October to March and from April to September respectively. Their spatial patterns were compared with those representing the annual cycle. Results highlight that the two regime classifications are able to reproduce most part of the patterns of the annual cycle, except during the transition weeks between the two periods, when patterns of the annual cycle resembling Atlantic Low regime are not also observed in any of the two classifications. Forecast skill of Atlantic Low was found to be similar to that of NAO+, the regime replacing Atlantic Low in the two classifications. Thus, although clustering yearly circulation data in two periods of 6 months each introduces a few deviations from the annual cycle of the regime patterns, it does not negatively affect sub-seasonal forecast skill. Beyond the winter season and the first ten forecast days, sub-seasonal forecasts of ECMWF are still able to achieve weekly frequency correlations of r = 0.5 for some regimes and start dates, including summer ones. ECMWF forecasts beat climatological forecasts in case of long-lasting regime events, and when measured by the fair continuous ranked probability skill score, but not when measured by the Brier skill score. Thus, more efforts have to be done yet in order to achieve minimum skill necessary to develop forecast products based on weather regimes outside winter season.


2004 ◽  
Vol 5 (1) ◽  
pp. 16
Author(s):  
Dean A. Glawe

Chinese matrimony-vine (Lycium chinense Mill.) is a traditional medicinal plant grown in China and used as a perennial landscape plant in North America. This report documents the presence of powdery mildew on L. chinense in the Pacific Northwest and describes and illustrates morphological features of the causal agent. It appears to be the first report of a powdery mildew caused by Arthrocladiella in the Pacific Northwest. Accepted for publication 10 November 2004. Published 8 December 2004.


2009 ◽  
Vol 24 (6) ◽  
pp. 1732-1747 ◽  
Author(s):  
Alain Roberge ◽  
John R. Gyakum ◽  
Eyad H. Atallah

Abstract Significant cool season precipitation along the western coast of North America is often associated with intense water vapor transport (IWVT) from the Pacific Ocean during favorable synoptic-scale flow regimes. These relatively narrow and intense regions of water vapor transport can originate in either the tropical or subtropical oceans, and sometimes have been referred to as Pineapple Express events in previous literature when originating near Hawaii. However, the focus of this paper will be on diagnosing the synoptic-scale signatures of all significant water vapor transport events associated with poleward moisture transport impacting the western coast of Canada, regardless of the exact points of origin of the associated atmospheric river. A trajectory analysis is used to partition the events as a means of creating coherent and meaningful synoptic-scale composites. The results indicate that these IWVT events can be clustered by the general area of origin of the majority of the saturated parcels impacting British Columbia and the Yukon Territories. IWVT events associated with more zonal trajectories are characterized by a strong and mature Aleutian low, whereas IWVT events associated with more meridional trajectories are often characterized by an anticyclone situated along the California or Oregon coastline, and a relatively mature poleward-traveling cyclone, commonly originating in the central North Pacific.


Sign in / Sign up

Export Citation Format

Share Document