scholarly journals Yearly evolution of Euro-Atlantic weather regimes and of their sub-seasonal predictability

2021 ◽  
Author(s):  
Nicola Cortesi ◽  
Verónica Torralba ◽  
Llorenó Lledó ◽  
Andrea Manrique-Suñén ◽  
Nube Gonzalez-Reviriego ◽  
...  

AbstractIt is often assumed that weather regimes adequately characterize atmospheric circulation variability. However, regime classifications spanning many months and with a low number of regimes may not satisfy this assumption. The first aim of this study is to test such hypothesis for the Euro-Atlantic region. The second one is to extend the assessment of sub-seasonal forecast skill in predicting the frequencies of occurrence of the regimes beyond the winter season. Two regime classifications of four regimes each were obtained from sea level pressure anomalies clustered from October to March and from April to September respectively. Their spatial patterns were compared with those representing the annual cycle. Results highlight that the two regime classifications are able to reproduce most part of the patterns of the annual cycle, except during the transition weeks between the two periods, when patterns of the annual cycle resembling Atlantic Low regime are not also observed in any of the two classifications. Forecast skill of Atlantic Low was found to be similar to that of NAO+, the regime replacing Atlantic Low in the two classifications. Thus, although clustering yearly circulation data in two periods of 6 months each introduces a few deviations from the annual cycle of the regime patterns, it does not negatively affect sub-seasonal forecast skill. Beyond the winter season and the first ten forecast days, sub-seasonal forecasts of ECMWF are still able to achieve weekly frequency correlations of r = 0.5 for some regimes and start dates, including summer ones. ECMWF forecasts beat climatological forecasts in case of long-lasting regime events, and when measured by the fair continuous ranked probability skill score, but not when measured by the Brier skill score. Thus, more efforts have to be done yet in order to achieve minimum skill necessary to develop forecast products based on weather regimes outside winter season.

2020 ◽  
Vol 101 (8) ◽  
pp. E1413-E1426 ◽  
Author(s):  
Antje Weisheimer ◽  
Daniel J. Befort ◽  
Dave MacLeod ◽  
Tim Palmer ◽  
Chris O’Reilly ◽  
...  

Abstract Forecasts of seasonal climate anomalies using physically based global circulation models are routinely made at operational meteorological centers around the world. A crucial component of any seasonal forecast system is the set of retrospective forecasts, or hindcasts, from past years that are used to estimate skill and to calibrate the forecasts. Hindcasts are usually produced over a period of around 20–30 years. However, recent studies have demonstrated that seasonal forecast skill can undergo pronounced multidecadal variations. These results imply that relatively short hindcasts are not adequate for reliably testing seasonal forecasts and that small hindcast sample sizes can potentially lead to skill estimates that are not robust. Here we present new and unprecedented 110-year-long coupled hindcasts of the next season over the period 1901–2010. Their performance for the recent period is in good agreement with those of operational forecast models. While skill for ENSO is very high during recent decades, it is markedly reduced during the 1930s–1950s. Skill at the beginning of the twentieth century is, however, as high as for recent high-skill periods. Consistent with findings in atmosphere-only hindcasts, a midcentury drop in forecast skill is found for a range of atmospheric fields, including large-scale indices such as the NAO and the PNA patterns. As with ENSO, skill scores for these indices recover in the early twentieth century, suggesting that the midcentury drop in skill is not due to a lack of good observational data. A public dissemination platform for our hindcast data is available, and we invite the scientific community to explore them.


2021 ◽  
Author(s):  
Massimiliano Palma ◽  
Franco Catalano ◽  
Irene Cionni ◽  
Marcello Petitta

<p>Renewable energy is the fastest-growing source of electricity globally, but climate variability and impacting events affecting the potential productivity of plants are obstacles to its integration and planning. Knowing a few months in advance the productivity of plants and the impact of extreme events on productivity and infrastructure can help operators and policymakers make the energy sector more resilient to climate variability, promoting the deployment of renewable energy while maintaining energy security.</p><p>The energy sector already uses weather forecasts up to 15 days for plant management; beyond this time horizon, climatologies are routinely used. This approach has inherent weaknesses, including the inability to predict extreme events, the prediction of which is extremely useful to decision-makers. Information on seasonal climate variability obtained through climate forecasts can be of considerable benefit in decision-making processes. The Climate Data Store of the Copernicus Climate Change Service (C3S) provides seasonal forecasts and a common period of retrospective simulations (hindcasts) with equal spatial temporal resolution for simulations from 5 European forecast centres (European Centre for Medium-Range Weather Forecasts (ECMWF), Deutscher Wetterdienst (DWD), Meteo France (MF), UK Met Office (UKMO) and Euro-Mediterranean Centre on Climate Change (CMCC)), one US forecasting centre (NCEP) plus the Japan Meteorological Agency (JMA) model.</p><p>In this work, we analyse the skill and the accuracy of a subset of the operational seasonal forecasts provided by Copernicus C3S, focusing on three relevant essential climate variables for the energy sector: temperature (t2m), wind speed (sfcWind, relevant to the wind energy production), and precipitation. The latter has been analysed by taking the Standard Precipitation Index (SPI) into account.</p><p>First, the methodologies for bias correction have been defined. Subsequently, the reliability of the forecasts has been assessed using appropriate reliability indicators based on comparison with ERA5 reanalysis dataset. The hindcasts cover the period 1993-2017. For each of the variables considered, we evaluated the seasonal averages based on monthly means for two seasons: winter (DJF) and summer (JJA). Data have been bias corrected following two methodologies, one based on the application of a variance inflation technique to ensure the correction of the bias and the correspondence of variance between forecast and observation; the other based on the correction of the bias, the overall forecast variance and the ensemble spread as described in Doblas-Reyes et al. (2005).</p><p>Predictive ability has been assessed by calculating binary (Brier Skill Score, BSS hereafter, and Ranked Probability Skill Score, RPSS hereafter) and continuous (Continuous Ranked Probability Skill Score, CRPSS hereafter) scores. Forecast performance has been assessed using ERA 5 reanalysis as pseudo-observations. </p><p>In this work we discuss the results obtained with different bias correction techniques highlighting the outcomes obtained analyzing the BSS for the first and the last terciles and the first and the last percentiles (10th and 90th). This analysis has the goal to identify the regions in which the seasonal forecast can be used to identify potential extreme events.</p>


2020 ◽  
Author(s):  
Andres Peñuela ◽  
Christopher Hutton ◽  
Francesca Pianosi

Abstract. Improved skill of long-range weather forecasts has motivated an increasing effort towards developing seasonal hydrological forecasting systems across Europe. Among other purposes, such forecasting systems are expected to support better water management decisions. In this paper we evaluate the potential use of a real-time optimisation system (RTOS) informed by seasonal forecasts in a water supply system in the UK. For this purpose, we simulate the performances of the RTOS fed by ECMWF seasonal forecasting systems (SEAS5) over the past ten years, and we compare them to a benchmark operation that mimics the common practices for reservoir operation in the UK. We also attempt to link the improvement of system performances, i.e. the forecast value, to the forecast skill (measured by the mean error and the Continuous Ranked Probability Skill Score) as well as other factors such as bias correction, the decision maker priorities, hydrological conditions and level of uncertainty consideration. We find that some of these factors control the forecast value much more strongly than the forecast skill. For the (realistic) scenario where the decision-maker prioritises water resource availability over energy cost reductions, we identify clear operational benefits from using seasonal forecasts, provided that forecast uncertainty is explicitly considered. However, when comparing the use of ECMWF-SEAS5 products to ensemble streamflow predictions (ESP), which are more easily derived from historical weather data, we find that ESP remains a hard-to-beat reference not only in terms of skill but also in terms of value.


2022 ◽  
Author(s):  
Peter Hitchcock ◽  
Amy Butler ◽  
Andrew Charlton-Perez ◽  
Chaim Garfinkel ◽  
Tim Stockdale ◽  
...  

Abstract. Major disruptions of the winter season, high-latitude, stratospheric polar vortices can result in stratospheric anomalies that persist for months. These sudden stratospheric warming events are recognized as an important potential source of forecast skill for surface climate on subseasonal to seasonal timescales. Realizing this skill in operational subseasonal forecast models remains a challenge, as models must capture both the evolution of the stratospheric polar vortices in addition to their coupling to the troposphere. The processes involved in this coupling remain a topic of open research. We present here the Stratospheric Nudging And Predictable Surface Impacts (SNAPSI) project. SNAPSI is a new model intercomparison protocol designed to study the role of the Arctic and Antarctic stratospheric polar vortices in sub-seasonal to seasonal forecast models. Based on a set of controlled, subseasonal, ensemble forecasts of three recent events, the protocol aims to address four main scientific goals. First, to quantify the impact of improved stratospheric forecasts on near-surface forecast skill. Second, to attribute specific extreme events to stratospheric variability. Third, to assess the mechanisms by which the stratosphere influences the troposphere in the forecast models, and fourth, to investigate the wave processes that lead to the stratospheric anomalies themselves. Although not a primary focus, the experiments are furthermore expected to shed light on coupling between the tropical stratosphere and troposphere. The output requested will allow for a more detailed, process-based community analysis than has been possible with existing databases of subseasonal forecasts.


2020 ◽  
Author(s):  
Lisa Degenhardt ◽  
Gregor Leckebusch ◽  
Adam Scaife

<p>Severe Atlantic winter storms are affecting densely populated regions of Europe (e.g. UK, France, Germany, etc.). Consequently, different parts of the society, financial industry (e.g., insurance) and last but not least the general public are interested in skilful forecasts for the upcoming storm season (usually December to March). To allow for a best possible use of steadily improved seasonal forecasts, the understanding which factors contribute to realise forecast skill is essential and will allow for an assessment whether to expect a forecast to be skilful or not.</p><p>This study analyses the predictability of the seasonal forecast model of the UK MetOffice, the GloSea5. Windstorm events are identified and tracked following Leckebusch et al. (2008) via the exceedance of the 98<sup>th</sup> percentile of the near surface wind speed.</p><p>Seasonal predictability of windstorm frequency in comparison to observations (based e.g., on ERA5 reanalysis) are calculated and different statistical methods (skill scores) are compared.</p><p>Large scale patterns (e.g., NAO, AO, EAWR, etc.) and dynamical factors (e.g., Eady Growth Rate) are analysed and their predictability is assessed in comparison to storm frequency forecast skill. This will lead to an idea how the forecast skill of windstorms is depending on the forecast skill of forcing factors conditional to the phase of large-scale variability modes. Thus, we deduce information, which factors are most important to generate seasonal forecast skill for severe extra-tropical windstorms.</p><p>The results can be used to get a better understanding of the resulting skill for the upcoming windstorm season.</p>


2009 ◽  
Vol 137 (3) ◽  
pp. 1132-1141 ◽  
Author(s):  
Stephen Cusack ◽  
Alberto Arribas

Abstract The limited numbers of start dates and ensemble sizes in seasonal forecasts lead to sampling errors in predictions. Defining the magnitude of these sampling errors would be useful for end users as well as informing decisions on resource allocation to minimize total system error. A numerical experiment has been designed to measure them, and results indicate that sampling errors are substantial in state-of-the-art seasonal forecast systems. The standard solution of increasing sample sizes is of limited benefit in seasonal forecasting because of restrictions imposed by resource costs and nonstationary observations. Alternative options, based on the postprocessing of forecast and hindcast data, are presented in this paper. The spatial and temporal aggregations of data together with the appropriate use of theoretical distributions can reduce the effect of sampling errors on forecast quantities by an amount equivalent to increasing samples sizes by a factor of 4 of more, with insignificant losses of forecast information. These postprocessing techniques can be viewed as cost-effective methods of reducing the effects of sampling errors in seasonal forecast quantities.


2016 ◽  
Author(s):  
Yoav Levi ◽  
Itzhak Carmona

Abstract. Seasonal forecast is being promoted as one of the climate services given to the public and decision makers also in the extra-tropics. However seasonal forecast is a scientific challenge. Rapid changes in climate and the socio-economic environment in the past 30 years introduce even a bigger challenge for the end-users of seasonal forecasts based on the past 30 years. Decision makers should relay on a forecast only if they fully understand the forecast skill and the forecast will not be a completely erroneous.Therefore, the percentage of forecasts for above normal condition that realized to be below normal conditions and vice versa is measured straightforwardly by the "Fiasco score". To overcome the climate and socio-economic environment changes an attempt to relate the next seasonal forecast to the previous season forecast and observed values was tested.The findings indicate that ECMWF system-4 seasonal forecast skill for June-July-August (JJA) temperatures for the marine tropics is very promising as indicated by all the skill scores, including using the previous JJA forecast as the base for the next JJA season. However for the boreal summer temperatures forecast over land, the main source of the model predictability originates from the warming trend along the hindcast period. Over the Middle East and Mongolia removing the temperature trend eliminated the high forecast skill. Evaluation of the ability of the next season forecast to predict the changes relative to the previous year's season has shown a positive skill in some areas compared to the traditional 30 years based climatology after both forecasts and observed data were de-trend.


2007 ◽  
Vol 135 (2) ◽  
pp. 409-429 ◽  
Author(s):  
A. Vidard ◽  
D. L. T. Anderson ◽  
M. Balmaseda

Abstract The relative merits of the Tropical Atmosphere–Ocean (TAO)/Triangle Trans-Ocean Buoy Network (TAO/TRITON) and Pilot Research Moored Array in the Tropical Atlantic mooring networks, the Voluntary Observing Ship (VOS) expendable bathythermograph (XBT) network, and the Argo float network are evaluated through their impact on ocean analyses and seasonal forecast skill. An ocean analysis is performed in which all available data are assimilated. In two additional experiments the moorings and the VOS datasets are withheld from the assimilation. To estimate the impact on seasonal forecast skill, the set of ocean analyses is then used to initialize a corresponding set of coupled ocean–atmosphere model forecasts. A further set of experiments is conducted to assess the impact of the more recent Argo array. A key parameter for seasonal forecast initialization is the depth of the thermocline in the tropical Pacific. This depth is quite similar in all of the experiments that involve data assimilation, but withdrawing the TAO data has a bigger effect than withdrawing XBT data, especially in the eastern half of the basin. The forecasts mainly indicate that the TAO/TRITON in situ temperature observations are essential to obtain optimum forecast skill. They are best combined with XBT, however, because this results in better predictions for the west Pacific. Furthermore, the XBTs play an important role in the North Atlantic. The ocean data assimilation performs less well in the tropical Atlantic. This may be partly a result of not having adequate observations of salinity.


Author(s):  
Kevin J. Dougherty ◽  
John D. Horel ◽  
Jason E. Nachamkin

AbstractPrecipitation forecasts from the High-Resolution Rapid Refresh model (HRRR) of the National Centers for Environmental Prediction (NCEP) and the Navy’s Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) are examined during heavy precipitation periods in California. Precipitation forecast discrepancies between the two models are examined during a recent heavy winter precipitation episode in California from 6-8 December 2019. The skill of initial 12-h precipitation forecasts is examined objectively from 1 December 2018 – 28 February 2019 from the HRRR, COAMPS, and NCEP’s North American Mesoscale Forecast System (NAM-3km). The HRRR exhibited lower seasonal biases and higher skill based on several metrics applied to a sample of 48 12-h periods during California’s second wettest winter season during the past 20 years. Overall, the NAM-3km and COAMPS exhibited a large wet bias over the interior mountain regions while the HRRR model indicated a dry bias along the northern coastal region. All models tended to underestimate precipitation along the coastal mountains of northern California. To highlight the regional and localized nature of forecast skill, the Fraction Skill Score (FSS) metric is applied across ranges of spatial scales and precipitation values. For the domain as a whole, the HRRR had higher precipitation forecast skill compared to the other two models, particularly within radial distances of 20-30 km and moderate (10-50 mm) precipitation totals. FSS computed locally highlights the HRRR’s overall higher skill as well as enhanced skill in the southern half of the state.


2021 ◽  
pp. 1-42
Author(s):  
QiFeng Qian ◽  
XiaoJing Jia ◽  
Hai Lin ◽  
Ruizhi Zhang

AbstractIn this study, four machine learning (ML) models (gradient boost decision tree (GBDT), light gradient boosting machine (LightGBM), categorical boosting (CatBoost) and extreme gradient boosting (XGBoost)) are used to perform seasonal forecasts for non-monsoonal winter precipitation over the Eurasian continent (30-60°N, 30-105°E) (NWPE). The seasonal forecast results from a traditional linear regression (LR) model and two dynamic models are compared. The ML and LR models are trained using the data for the period of 1979-2010, and then, these empirical models are used to perform the seasonal forecast of NWPE for 2011-2018. Our results show that the four ML models have reasonable seasonal forecast skills for the NWPE and clearly outperform the LR model. The ML models and the dynamic models have skillful forecasts for the NWPE over different regions. The ensemble means of the forecasts including the ML models and dynamic models show higher forecast skill for the NWEP than the ensemble mean of the dynamic-only models. The forecast skill of the ML models mainly benefits from a skillful forecast of the third empirical orthogonal function (EOF) mode (EOF3) of the NWPE, which has a good and consistent prediction among the ML models. Our results also illustrate that the sea ice over the Arctic in the previous autumn is the most important predictor in the ML models in forecasting the NWPE. This study suggests that ML models may be useful tools to help improve seasonal forecasts of the NWPE.


Sign in / Sign up

Export Citation Format

Share Document