Seasonal Hydroclimate Variability over North America in Global and Regional Reanalyses and AMIP Simulations: Varied Representation

2006 ◽  
Vol 19 (5) ◽  
pp. 815-837 ◽  
Author(s):  
Sumant Nigam ◽  
Alfredo Ruiz-Barradas

Abstract The monotony of seasonal variability is often compensated by the complexity of its spatial structure—the case in North American hydroclimate. The structure of hydroclimate variability is analyzed to provide insights into the functioning of the climate system and climate models. The consistency of hydroclimate representation in two global [40-yr ECMWF Re-Analysis (ERA-40) and NCEP] and one regional [North American Regional Reanalysis (NARR)] reanalysis is examined first, from analysis of precipitation, evaporation, surface air temperature (SAT), and moisture flux distributions. The intercomparisons benchmark the recently released NARR data and provide context for evaluation of the simulation potential of two state-of-the-art atmospheric models [NCAR's Community Atmospheric Model (CAM3.0) and NASA's Seasonal-to-Interannual Prediction Project (NSIPP) atmospheric model]. Intercomparisons paint a gloomy picture: great divergence in global reanalysis representations of precipitation, with the eastern United States being drier in ERA-40 and wetter in NCEP in the annual mean by up to a third in each case; model averages are like ERA-40. The annual means, in fact, mask even larger but offsetting seasonal departures. Analysis of moisture transport shows winter fluxes to be more consistently represented. Summer flux convergence over the Gulf Coast and Great Plains, however, differs considerably between global and regional reanalyses. Flux distributions help in understanding the choice of rainy season, especially the winter one in the Pacific Northwest; stationary fluxes are key. Land–ocean competition for convection is too intense in the models—so much so that the oceanic ITCZ in July is southward of its winter position in the both simulations! The overresponsiveness of land is also manifest in SAT; the winter-to-summer change over the Great Plains is 5–9 K larger than in observations, with implications for modeling of climate sensitivity. The nature of atmospheric water balance over the Great Plains is probed, despite unbalanced moisture budgets in reanalyses and model simulations. The imbalance is smaller in NARR but still unacceptably large, resulting from excessive evaporation in spring and summer. Adjusting evaporation during precipitation assimilation could lead to a more balanced budget. Global and regional reanalysis will remain of limited use for hydroclimate studies until they comply with the operative water and energy balance constraints.

2006 ◽  
Vol 19 (12) ◽  
pp. 3004-3010 ◽  
Author(s):  
Alfredo Ruiz-Barradas ◽  
Sumant Nigam

Abstract Interannual variability of warm-season rainfall over the Great Plains is analyzed using the recently released North American Regional Reanalysis (NARR). The new dataset differs from its global counterparts in the additional assimilation of precipitation and radiances. This along with the use of a more comprehensive land surface model in generation of NARR offers the prospect of obtaining improved estimates of surface hydrologic and near-surface meteorological fields. NARR’s representation of hydroclimate is used to weigh in on the authors’ recent finding of the dominance of large-scale moisture flux convergence over evaporation in accounting for Great Plains precipitation variations. Evaporation estimates are notoriously uncertain and, while the NARR ones are not assured to be realistic, they are more constrained than those diagnosed before from inline and offline assessments. NARR’s portrayal of warm-season hydroclimate variability corroborates the importance of remote water sources in generation of Great Plains precipitation variability and supports the authors’ claim that some state-of-the-art atmosphere/land surface models vigorously recycle precipitation, erroneously, at least in context of Great Plains interannual variability. These very models have been key to recent claims of strong coupling between soil moisture and precipitation.


Plant Disease ◽  
2002 ◽  
Vol 86 (1) ◽  
pp. 15-19 ◽  
Author(s):  
D. L. Long ◽  
K. J. Leonard ◽  
M. E. Hughes

Isolates of Puccinia triticina were obtained from wheat leaf collections made by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio Valley, and Gulf Coast states in 1999. Pathogenic races were determined from virulence/avirulence phenotypes on 14 host lines that are near-isogenic for leaf rust resistance. We found 58 races among 1,180 isolates in 1999. As in previous surveys, regional race distribution patterns showed that the central United States is a single epidemiological unit distinct from the eastern United States. The distinctive racial composition of collections from the Southeast, Northeast, and Ohio Valley indicates that populations of P. triticina in those areas are not closely connected, suggesting epidemics originate from localized overwintering sources.


2011 ◽  
Vol 24 (16) ◽  
pp. 4519-4528 ◽  
Author(s):  
Martin Hoerling ◽  
James Hurrell ◽  
Arun Kumar ◽  
Laurent Terray ◽  
Jon Eischeid ◽  
...  

Abstract The predictability of North American climate is diagnosed by taking into account both forced climate change and natural decadal-scale climate variability over the next decade. In particular, the “signal” in North American surface air temperature and precipitation over 2011–20 associated with the expected change in boundary conditions related to future anthropogenic greenhouse gas (GHG) forcing, as well as the “noise” around that signal due to internally generated ocean–atmosphere variability, is estimated. The structural uncertainty in the estimate of decadal predictability is diagnosed by examining the sensitivity to plausible scenarios for the GHG-induced change in boundary forcing, the model dependency of the forced signals, and the dependency on methods for estimating internal decadal noise. The signal-to-noise analysis by the authors is thus different from other published decadal prediction studies, in that this study does not follow a trajectory from a particular initial state but rather considers the statistics of internal variability in comparison with the GHG signal. The 2011–20 decadal signal is characterized by surface warming over the entire North American continent, precipitation decreases over the contiguous United States, and precipitation increases over Canada relative to 1971–2000 climatological conditions. The signs of these forced responses are robust across different sea surface temperature (SST) scenarios and the different models employed, though the amplitude of the response differs. The North American decadal noise is considerably smaller than the signal associated with boundary forcing, implying a potential for high forecast skill for 2011–20 North American climate even for prediction methods that do not attempt to initialize climate models. However, the results do suggest that initialized decadal predictions, which seek to forecast externally forced signals and also constrain the internal variability, could potentially improve upon uninitialized methods in regions where the external signal is small relative to internal variability.


Plant Disease ◽  
2000 ◽  
Vol 84 (12) ◽  
pp. 1334-1341 ◽  
Author(s):  
D. L. Long ◽  
K. J. Leonard ◽  
M. E. Hughes

Isolates of Puccinia triticina were obtained from wheat leaf collections made by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio Valley, and Gulf Coast states in 1996, 1997, and 1998. Virulence-avirulence phenotypes were determined on 14 host lines that are near-isogenic for leaf rust resistance. We found 31 phenotypes among 277 single uredinial isolates in 1996, 56 phenotypes among 989 isolates in 1997, and 43 phenotypes among 989 isolates in 1998. As in previous surveys, regional race distribution patterns showed that the central United States is a single epidemiological unit distinct from the eastern United States. The distinctive racial composition of collections from the southeast, northeast, and Ohio Valley indicate that populations of P. triticina in those areas are not closely connected, suggesting that epidemics originate from localized overwintering sources.


2018 ◽  
Vol 22 (5) ◽  
pp. 1-24 ◽  
Author(s):  
Richard Seager ◽  
Jamie Feldman ◽  
Nathan Lis ◽  
Mingfang Ting ◽  
Alton P. Williams ◽  
...  

Abstract The 100th meridian bisects the Great Plains of the United States and effectively divides the continent into more arid western and less arid eastern halves and is well expressed in terms of vegetation, land hydrology, crops, and the farm economy. Here, it is considered how this arid–humid divide will change in intensity and location during the current century under rising greenhouse gases. It is first shown that state-of-the-art climate models from phase 5 of the Coupled Model Intercomparison Project generally underestimate the degree of aridity of the United States and simulate an arid–humid divide that is too diffuse. These biases are traced to excessive precipitation and evapotranspiration and inadequate blocking of eastward moisture flux by the Pacific coastal ranges and Rockies. Bias-corrected future projections are developed that modify observationally based measures of aridity by the model-projected fractional changes in aridity. Aridity increases across the United States, and the aridity gradient weakens. The main contributor to the changes is rising potential evapotranspiration, while changes in precipitation working alone increase aridity across the southern and decrease across the northern United States. The “effective 100th meridian” moves to the east as the century progresses. In the current farm economy, farm size and percent of county under rangelands increase and percent of cropland under corn decreases as aridity increases. Statistical relations between these quantities and the bias-corrected aridity projections suggest that, all else being equal (which it will not be), adjustment to changing environmental conditions would cause farm size and rangeland area to increase across the plains and percent of cropland under corn to decrease in the northern plains as the century advances.


2005 ◽  
Vol 18 (11) ◽  
pp. 1808-1830 ◽  
Author(s):  
Alfredo Ruiz-Barradas ◽  
Sumant Nigam

Abstract Interannual variability of Great Plains precipitation in the warm season months is analyzed using gridded observations, satellite-based precipitation estimates, NCEP reanalysis data and the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data, and the half-century-long NCAR Community Atmosphere Model (CAM3.0, version 3.0) and the National Aeronautics and Space Administration (NASA) Seasonal-to-Intraseasonal Prediction Project (NSIPP) atmospheric model simulations. Regional hydroclimate is the focus because of its immense societal impact and because the involved variability mechanisms are not well understood. The Great Plains precipitation variability is represented rather differently, and only quasi realistically, in the reanalyses. NCEP has larger amplitude but less traction with observations in comparison with ERA-40. Model simulations exhibit more realistic amplitudes, which are between those of NCEP and ERA-40. The simulated variability is however uncorrelated with observations in both models, with monthly correlations smaller than 0.10 in all cases. An assessment of the regional atmosphere water balance is revealing: Stationary moisture flux convergence accounts for most of the Great Plains variability in ERA-40, but not in the NCEP reanalysis and model simulations; convergent fluxes generate less than half of the precipitation in the latter, while local evaporation does the rest in models. Phenomenal evaporation in the models—up to 4 times larger than the highest observationally constrained estimate (NCEP’s)—provides the bulk of the moisture for Great Plains precipitation variability; thus, precipitation recycling is very efficient in both models, perhaps too efficient. Remote water sources contribute substantially to Great Plains hydroclimate variability in nature via fluxes. Getting the interaction pathways right is presently challenging for the models.


Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1391-1400 ◽  
Author(s):  
D. L. Long ◽  
K. J. Leonard ◽  
J. J. Roberts

Isolates of Puccinia triticina were obtained from wheat leaf collections made by cooperators throughout the United States and from cereal rust field surveys of the Great Plains, Ohio Valley, and Gulf Coast states in 1993, 1994, and 1995. Sixty-two virulence/avirulence phenotypes on 14 host lines that are near-isogenic for leaf rust resistance were found among 681 single uredinial isolates in 1993, 42 phenotypes were found among 683 isolates in 1994, and 51 among 701 isolates in 1995. As in previous surveys, regional race distribution patterns showed that the central United States is a single epidemiological unit distinct from the eastern United States. The distinctive racial composition of collections from the Southeast, Northeast, and Ohio Valley indicates that populations of P. triticina in those areas are discrete, suggesting epidemics originate from localized overwintering sources.


2016 ◽  
Vol 17 (2) ◽  
pp. 541-556 ◽  
Author(s):  
Hyo-Jong Song ◽  
Craig R. Ferguson ◽  
Joshua K. Roundy

Abstract The multimodel Global Land–Atmosphere Coupling Experiment (GLACE) identified the semiarid Southern Great Plains (SGP) as a hotspot for land–atmosphere (LA) coupling and, consequently, land-derived temperature and precipitation predictability. The area including and surrounding the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) SGP Climate Research Facility has in particular been well studied in the context of LA coupling. Observation-based studies suggest a coupling signal that is much weaker than modeled, if not elusive. Using North American Regional Reanalysis and North American Land Data Assimilation System data, this study provides a 36-yr (1979–2014) climatology of coupling for ARM-SGP that 1) unifies prior interdisciplinary efforts and 2) isolates the origin of the (weak) coupling signal. Specifically, the climatology of a prominent convective triggering potential–low-level humidity index (CTP–HIlow) coupling classification is linked to corresponding synoptic–mesoscale weather and atmospheric moisture budget analyses. The CTP–HIlow classification defines a dry-advantage regime for which convective triggering is preferentially favored over drier-than-average soils as well as a wet-advantage regime for which convective triggering is preferentially favored over wetter-than-average soils. This study shows that wet-advantage days are a result of horizontal moisture flux convergence over the region, and conversely, dry-advantage days are a result of zonal and vertical moisture flux divergence. In this context, the role of the land is nominal relative to that of atmospheric forcing. Surface flux partitioning, however, can play an important role in modulating diurnal precipitation cycle phase and amplitude and it is shown that soil moisture and sensible heat flux are significantly correlated with both occurrence and intensity of afternoon peak precipitation.


Sign in / Sign up

Export Citation Format

Share Document