scholarly journals Climatology of Daily Precipitation and Extreme Precipitation Events in the Northeast United States

2015 ◽  
Vol 16 (6) ◽  
pp. 2537-2557 ◽  
Author(s):  
Laurie Agel ◽  
Mathew Barlow ◽  
Jian-Hua Qian ◽  
Frank Colby ◽  
Ellen Douglas ◽  
...  

Abstract This study examines U.S. Northeast daily precipitation and extreme precipitation characteristics for the 1979–2008 period, focusing on daily station data. Seasonal and spatial distribution, time scale, and relation to large-scale factors are examined. Both parametric and nonparametric extreme definitions are considered, and the top 1% of wet days is chosen as a balance between sample size and emphasis on tail distribution. The seasonal cycle of daily precipitation exhibits two distinct subregions: inland stations characterized by frequent precipitation that peaks in summer and coastal stations characterized by less frequent but more intense precipitation that peaks in late spring as well as early fall. For both subregions, the frequency of extreme precipitation is greatest in the warm season, while the intensity of extreme precipitation shows no distinct seasonal cycle. The majority of Northeast precipitation occurs as isolated 1-day events, while most extreme precipitation occurs on a single day embedded in 2–5-day precipitation events. On these extreme days, examination of hourly data shows that 3 h or less account for approximately 50% of daily accumulation. Northeast station precipitation extremes are not particularly spatially cohesive: over 50% of extreme events occur at single stations only, and 90% occur at only 1–3 stations concurrently. The majority of extreme days (75%–100%) are related to extratropical storms, except during September, when more than 50% of extremes are related to tropical storms. Storm tracks on extreme days are farther southwest and more clustered than for all storm-related precipitation days.

2017 ◽  
Vol 30 (4) ◽  
pp. 1307-1326 ◽  
Author(s):  
Siyu Zhao ◽  
Yi Deng ◽  
Robert X. Black

Abstract Regional patterns of extreme precipitation events occurring over the continental United States are identified via hierarchical cluster analysis of observed daily precipitation for the period 1950–2005. Six canonical extreme precipitation patterns (EPPs) are isolated for the boreal warm season and five for the cool season. The large-scale meteorological pattern (LMP) inducing each EPP is identified and used to create a “base function” for evaluating a climate model’s potential for accurately representing the different patterns of precipitation extremes. A parallel analysis of the Community Climate System Model, version 4 (CCSM4), reveals that the CCSM4 successfully captures the main U.S. EPPs for both the warm and cool seasons, albeit with varying degrees of accuracy. The model’s skill in simulating each EPP tends to be positively correlated with its capability in representing the associated LMP. Model bias in the occurrence frequency of a governing LMP is directly related to the frequency bias in the corresponding EPP. In addition, however, discrepancies are found between the CCSM4’s representation of LMPs and EPPs over regions such as the western United States and Midwest, where topographic precipitation influences and organized convection are prominent, respectively. In these cases, the model representation of finer-scale physical processes appears to be at least equally important compared to the LMPs in driving the occurrence of extreme precipitation.


2008 ◽  
Vol 21 (1) ◽  
pp. 22-39 ◽  
Author(s):  
Siegfried D. Schubert ◽  
Yehui Chang ◽  
Max J. Suarez ◽  
Philip J. Pegion

Abstract In this study the authors examine the impact of El Niño–Southern Oscillation (ENSO) on precipitation events over the continental United States using 49 winters (1949/50–1997/98) of daily precipitation observations and NCEP–NCAR reanalyses. The results are compared with those from an ensemble of nine atmospheric general circulation model (AGCM) simulations forced with observed SST for the same time period. Empirical orthogonal functions (EOFs) of the daily precipitation fields together with compositing techniques are used to identify and characterize the weather systems that dominate the winter precipitation variability. The time series of the principal components (PCs) associated with the leading EOFs are analyzed using generalized extreme value (GEV) distributions to quantify the impact of ENSO on the intensity of extreme precipitation events. The six leading EOFs of the observations are associated with major winter storm systems and account for more than 50% of the daily precipitation variability along the West Coast and over much of the eastern part of the country. Two of the leading EOFs (designated GC for Gulf Coast and EC for East Coast) together represent cyclones that develop in the Gulf of Mexico and occasionally move and/or redevelop along the East Coast producing large amounts of precipitation over much of the southern and eastern United States. Three of the leading EOFs represent storms that hit different sections of the West Coast (designated SW for Southwest coast, WC for the central West Coast, and NW for northwest coast), while another represents storms that affect the Midwest (designated by MW). The winter maxima of several of the leading PCs are significantly impacted by ENSO such that extreme GC, EC, and SW storms that occur on average only once every 20 years (20-yr storms) would occur on average in half that time under sustained El Niño conditions. In contrast, under La Niña conditions, 20-yr GC and EC storms would occur on average about once in 30 years, while there is little impact of La Niña on the intensity of the SW storms. The leading EOFs from the model simulations and their connections to ENSO are for the most part quite realistic. The model, in particular, does very well in simulating the impact of ENSO on the intensity of EC and GC storms. The main model discrepancies are the lack of SW storms and an overall underestimate of the daily precipitation variance.


2021 ◽  
Author(s):  
Jérôme Kopp ◽  
Pauline Rivoire ◽  
S. Mubashshir Ali ◽  
Yannick Barton ◽  
Olivia Martius

<p>Temporal clustering of extreme precipitation events on subseasonal time scales is a type of compound event, which can cause large precipitation accumulations and lead to floods. We present a novel count-based procedure to identify subseasonal clustering of extreme precipitation events. Furthermore, we introduce two metrics to characterise the frequency of subseasonal clustering episodes and their relevance for large precipitation accumulations. The advantage of this approach is that it does not require the investigated variable (here precipitation) to satisfy any specific statistical properties. Applying this methodology to the ERA5 reanalysis data set, we identify regions where subseasonal clustering of annual high precipitation percentiles occurs frequently and contributes substantially to large precipitation accumulations. Those regions are the east and northeast of the Asian continent (north of Yellow Sea, in the Chinese provinces of Hebei, Jilin and Liaoning; North and South Korea; Siberia and east of Mongolia), central Canada and south of California, Afghanistan, Pakistan, the southeast of the Iberian Peninsula, and the north of Argentina and south of Bolivia. Our method is robust with respect to the parameters used to define the extreme events (the percentile threshold and the run length) and the length of the subseasonal time window (here 2 – 4 weeks). The procedure could also be used to identify temporal clustering of other variables (e.g. heat waves) and can be applied on different time scales (e.g. for drought years). <span>For a complementary study on the subseasonal clustering of European extreme precipitation events and its relationship to large-scale atmospheric drivers, please refer to Barton et al.</span></p>


2019 ◽  
Vol 147 (4) ◽  
pp. 1415-1428 ◽  
Author(s):  
Imme Benedict ◽  
Karianne Ødemark ◽  
Thomas Nipen ◽  
Richard Moore

Abstract A climatology of extreme cold season precipitation events in Norway from 1979 to 2014 is presented, based on the 99th percentile of the 24-h accumulated precipitation. Three regions, termed north, west, and south are identified, each exhibiting a unique seasonal distribution. There is a proclivity for events to occur during the positive phase of the NAO. The result is statistically significant at the 95th percentile for the north and west regions. An overarching hypothesis of this work is that anomalous moisture flux, or so-called atmospheric rivers (ARs), are integral to extreme precipitation events during the Norwegian cold season. An objective analysis of the integrated vapor transport illustrates that more than 85% of the events are associated with ARs. An empirical orthogonal function and fuzzy cluster technique is used to identify the large-scale weather patterns conducive to the moisture flux and extreme precipitation. Five days before the event and for each of the three regions, two patterns are found. The first represents an intense, southward-shifted jet with a southwest–northeast orientation. The second identifies a weak, northward-shifted, zonal jet. As the event approaches, regional differences become more apparent. The distinctive flow pattern conducive to orographically enhanced precipitation emerges in the two clusters for each region. For the north and west regions, this entails primarily zonal flow impinging upon the south–north-orientated topography, the difference being the latitude of the strong flow. In contrast, the south region exhibits a significant southerly component to the flow.


Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 325 ◽  
Author(s):  
Alexandre M. Ramos ◽  
Ricardo M. Trigo ◽  
Ricardo Tomé ◽  
Margarida L. R. Liberato

The European Macaronesia Archipelagos (Azores, Madeira and Canary Islands) are struck frequently by extreme precipitation events. Here we present a comprehensive assessment on the relationship between atmospheric rivers and extreme precipitation events in these three Atlantic Archipelagos. The relationship between the daily precipitation from the various weather stations located in the different Macaronesia islands and the occurrence of atmospheric rivers (obtained from four different reanalyses datasets) are analysed. It is shown that the atmospheric rivers’ influence over extreme precipitation (above the 90th percentile) is higher in the Azores islands when compared to Madeira or Canary Islands. In Azores, for the most extreme precipitation days, the presence of atmospheric rivers is particularly significant (up to 50%), while for Madeira, the importance of the atmospheric rivers is reduced (between 30% and 40%). For the Canary Islands, the occurrence of atmospheric rivers on extreme precipitation is even lower.


2018 ◽  
Vol 31 (6) ◽  
pp. 2115-2131 ◽  
Author(s):  
Steven C. Chan ◽  
Elizabeth J. Kendon ◽  
Nigel Roberts ◽  
Stephen Blenkinsop ◽  
Hayley J. Fowler

Midlatitude extreme precipitation events are caused by well-understood meteorological drivers, such as vertical instability and low pressure systems. In principle, dynamical weather and climate models behave in the same way, although perhaps with the sensitivities to the drivers varying between models. Unlike parameterized convection models (PCMs), convection-permitting models (CPMs) are able to realistically capture subdaily extreme precipitation. CPMs are computationally expensive; being able to diagnose the occurrence of subdaily extreme precipitation from large-scale drivers, with sufficient skill, would allow effective targeting of CPM downscaling simulations. Here the regression relationships are quantified between the occurrence of extreme hourly precipitation events and vertical stability and circulation predictors in southern United Kingdom 1.5-km CPM and 12-km PCM present- and future-climate simulations. Overall, the large-scale predictors demonstrate skill in predicting the occurrence of extreme hourly events in both the 1.5- and 12-km simulations. For the present-climate simulations, extreme occurrences in the 12-km model are less sensitive to vertical stability than in the 1.5-km model, consistent with understanding the limitations of cumulus parameterization. In the future-climate simulations, the regression relationship is more similar between the two models, which may be understood from changes to the large-scale circulation patterns and land surface climate. Overall, regression analysis offers a promising avenue for targeting CPM simulations. The authors also outline which events would be missed by adopting such a targeted approach.


2015 ◽  
Vol 143 (3) ◽  
pp. 718-741 ◽  
Author(s):  
Benjamin J. Moore ◽  
Kelly M. Mahoney ◽  
Ellen M. Sukovich ◽  
Robert Cifelli ◽  
Thomas M. Hamill

Abstract This paper documents the characteristics of extreme precipitation events (EPEs) in the southeastern United States (SEUS) during 2002–11. The EPEs are identified by applying an object-based method to 24-h precipitation analyses from the NCEP stage-IV dataset. It is found that EPEs affected the SEUS in all months and occurred most frequently in the western portion of the SEUS during the cool season and in the eastern portion during the warm season. The EPEs associated with tropical cyclones, although less common, tended to be larger in size, more intense, and longer lived than “nontropical” EPEs. Nontropical EPEs in the warm season, relative to those in the cool season, tended to be smaller in size and typically involved more moist, conditionally unstable conditions but weaker dynamical influences. Synoptic-scale composites are constructed for nontropical EPEs stratified by the magnitude of vertically integrated water vapor transport (IVT) to examine distinct scenarios for the occurrence of EPEs. The composite results indicate that “strong IVT” EPEs occur within high-amplitude flow patterns involving strong transport of moist, conditionally unstable air within the warm sector of a cyclone, whereas “weak IVT” EPEs occur within low-amplitude flow patterns featuring weak transport but very moist and conditionally unstable conditions. Finally, verification of deterministic precipitation forecasts from a reforecast dataset based on the NCEP Global Ensemble Forecast System reveals that weak-IVT EPEs were characteristically associated with lower forecast skill than strong-IVT EPEs. Based on these results, it is suggested that further research should be conducted to investigate the forecast challenges associated with EPEs in the SEUS.


2013 ◽  
Vol 26 (10) ◽  
pp. 3209-3230 ◽  
Author(s):  
Anthony M. DeAngelis ◽  
Anthony J. Broccoli ◽  
Steven G. Decker

Abstract Climate model simulations of daily precipitation statistics from the third phase of the Coupled Model Intercomparison Project (CMIP3) were evaluated against precipitation observations from North America over the period 1979–99. The evaluation revealed that the models underestimate the intensity of heavy and extreme precipitation along the Pacific coast, southeastern United States, and southern Mexico, and these biases are robust among the models. The models also overestimate the intensity of light precipitation events over much of North America, resulting in fairly realistic mean precipitation in many places. In contrast, heavy precipitation is simulated realistically over northern and eastern Canada, as is the seasonal cycle of heavy precipitation over a majority of North America. An evaluation of the simulated atmospheric dynamics and thermodynamics associated with extreme precipitation events was also conducted using the North American Regional Reanalysis (NARR). The models were found to capture the large-scale physical mechanisms that generate extreme precipitation realistically, although they tend to overestimate the strength of the associated atmospheric circulation features. This suggests that climate model deficiencies such as insufficient spatial resolution, inadequate representation of convective precipitation, and overly smoothed topography may be more important for biases in simulated heavy precipitation than errors in the large-scale circulation during extreme events.


Sign in / Sign up

Export Citation Format

Share Document