Implementation of Snowpack Treatment in the CPC Water Balance Model and Its Impact on Drought Assessment

Author(s):  
Jorge Arevalo ◽  
Josh Welty ◽  
Yun Fan ◽  
Xubin Zeng

AbstractDroughts are a worldwide concern, thus assessment efforts are conducted by many centers around the world, mainly through simple drought indices which usually neglect important hydrometeorological processes or require variables available only from complex Land Surface Models (LSMs). The U.S. Climate Prediction Center (CPC) uses the Leaky Bucket (LB) water-balance model to post-process temperature and precipitation, providing soil moisture (SM) anomalies to assess drought conditions. However, despite its crucial role in the water cycle, snowpack has been neglected by LB and most drought indices.Taking advantage of the high-quality snow water equivalent (SWE) data from the University of Arizona (UA), a single-layer snow scheme, forced by daily temperature and precipitation only, is developed for LB implementation and tested with two independent forcing datasets. Compared against the UA and SNOTEL SWE data over CONUS, LB outperforms a sophisticated LSM (Noah/NLDAS-2), with the median LB vs SNOTEL correlation (RMSE) about 40% (26%) higher (lower) than that from Noah/NLDAS-2, with only slight differences due to different forcing datasets.The changes in the temporal variability of SM due to the snowpack treatment lead to improved temporal and spatial distribution of drought conditions in the LB simulations compared to the reference U.S. Drought Monitor maps, highlighting the importance of snowpack inclusion in drought assessment. The simplicity but reasonable reliability of the LB with snowpack treatment makes it suitable for drought monitoring and forecasting in both snow-covered and snow-free areas, while only requiring precipitation and temperature data (markedly less than other water-balance-based indices).

2010 ◽  
Vol 14 (10) ◽  
pp. 2141-2151 ◽  
Author(s):  
C. Corbari ◽  
J. A. Sobrino ◽  
M. Mancini ◽  
V. Hidalgo

Abstract. Land surface temperature is the link between soil-vegetation-atmosphere fluxes and soil water content through the energy water balance. This paper analyses the representativeness of land surface temperature (LST) for a distributed hydrological water balance model (FEST-EWB) using LST from AHS (airborne hyperspectral scanner), with a spatial resolution between 2–4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the representative equilibrium temperature that closes the energy balance equation in the distributed hydrological model. Diurnal and nocturnal images are analyzed due to the non stable behaviour of the thermodynamic temperature and to the non linear effects induced by spatial heterogeneity. Spatial autocorrelation and scale of fluctuation of land surface temperature from FEST-EWB and AHS are analysed at different aggregation areas to better understand the scale of representativeness of land surface temperature in a hydrological process. The study site is the agricultural area of Barrax (Spain) that is a heterogeneous area with a patchwork of irrigated and non irrigated vegetated fields and bare soil. The used data set was collected during a field campaign from 10 to 15 July 2005 in the framework of the SEN2FLEX project.


2012 ◽  
Vol 13 (5) ◽  
pp. 1604-1620 ◽  
Author(s):  
Randal D. Koster ◽  
Sarith P. P. Mahanama

Abstract Hydroclimatic means and variability are determined in large part by the control of soil moisture on surface moisture fluxes, particularly evapotranspiration and runoff. This control is examined here using a simple water balance model and multidecadal observations covering the conterminous United States. Under the assumption that the relevant soil moisture–evapotranspiration and soil moisture–runoff relationships are, to first order, universal, the simple model illustrates the degree to which they interact to determine spatial distributions of hydroclimatic means and variability. In the process, the simple model provides estimates for the underlying relationships that operate in nature. The hydroclimatic sensitivities established with the simple water balance model can be used to evaluate more complex land surface models and to guide their further development, as demonstrated herein with an example.


2010 ◽  
Vol 7 (4) ◽  
pp. 5335-5368 ◽  
Author(s):  
C. Corbari ◽  
J. A. Sobrino ◽  
M. Mancini ◽  
V. Hidalgo

Abstract. Land surface temperature is the link between soil-vegetation-atmosphere fluxes and soil water content through the energy water balance. This paper analyses the representativeness of land surface temperature (LST) for a distributed hydrological water balance model (FEST-EWB) using LST from AHS (airborne hyperspectral scanner), with a spatial resolution between 2–4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the representative equilibrium temperature that closes the energy balance equation in the distributed hydrological model. Diurnal and nocturnal images are analyzed due to the non stable behaviour of the thermodynamic temperature and to the non linear effects induced by spatial heterogeneity. Spatial autocorrelation and scale of fluctuation of land surface temperature from FEST-EWB and AHS are analysed at different aggregation areas to better understand the scale of representativeness of land surface temperature in an hydrological process. The study site is the agricultural area of Barrax (Spain) that is a heterogeneous area with an alternation of irrigated and non irrigated vegetated field and bare soil. The used data set was collected during a field campaign from 10 to 15 July 2005 in the framework of the SEN2FLEX project.


2021 ◽  
Vol 188 ◽  
pp. 104466
Author(s):  
Nicola Paciolla ◽  
Chiara Corbari ◽  
Guangcheng Hu ◽  
Chaolei Zheng ◽  
Massimo Menenti ◽  
...  

2020 ◽  
Vol 12 (24) ◽  
pp. 4083
Author(s):  
Chiara Corbari ◽  
Drazen Skokovic Jovanovic ◽  
Luigi Nardella ◽  
Josè Sobrino ◽  
Marco Mancini

The feasibility of combining remotely sensed land surface temperature data (LST) and an energy–water balance model for improving evapotranspiration estimates over time distributed in space in the Capitanata irrigation consortium is analysed. The energy–water balance FEST-EWB model (flash flood event-based spatially distributed rainfall–runoff transformation—energy–water balance model) computes continuously in time and is distributed in space soil moisture (SM) and evapotranspiration (ET) fluxes solving for a land surface temperature that closes the energy–water balance equations. The comparison between modelled and observed LST was used to calibrate the model soil parametres with a newly developed pixel to pixel calibration procedure. The effects of the calibration procedure were analysed against ground measures of soil moisture and evapotranspiration. The FEST-EWB model was run at 30 m of spatial resolution for the period between 2013 and 2018. Absolute errors of 2.5 °C were obtained for LST estimates against satellite data; while RMSE around 0.06 and 40 Wm−2 are found for ground measured soil moisture and latent heat flux, respectively.


2019 ◽  
Vol 2 (2) ◽  
pp. 105-111 ◽  
Author(s):  
Nayan Zagade ◽  
Ajaykumar Kadam ◽  
Bhavana Umrikar ◽  
Bhagyashri Maggirwar

Drought assessment for agricultural sector is vital in order to deal with the water scarcity in Ahmednagar and Pune districts, particularly in sub-watersheds of upper catchment of the River Bhima. Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite data (2000, 2002, 2009, 2014, 2015 and 2017) for the years receiving less rainfall have been procured and various indices were computed to understand the intensity of agricultural droughts in the area. Vegetation health index (VHI) is computed on the basis of vegetation moisture, vegetation condition and land surface temperature condition. Most of the reviewed area shows moderate to extreme drought conditions.


Sign in / Sign up

Export Citation Format

Share Document