Machine learning approaches for improving near-real-time IMERG rainfall estimates by integrating Cloud Properties from NOAA CDR PATMOSX

Author(s):  
Zhi Zhang ◽  
Dagang Wang ◽  
Jianxiu Qiu ◽  
Jinxin Zhu ◽  
Tingli Wang

AbstractThe Global Precipitation Measurement (GPM) mission provides satellite precipitation products with an unprecedented spatio-temporal resolution and spatial coverage. However, its near-real-time (NRT) product still suffers from low accuracy. This study aims to improve the early run of the Integrated Multi-satellitE Retrievals for GPM (IMERG) by using four machine learning approaches, i.e., support vector machine (SVM), random forest (RF), artificial neural network (ANN), and Extreme Gradient Boosting (XGB). The cloud properties are selected as the predictors in addition to the original IMERG in these approaches. All the four approaches show similar improvement, with 53%-60% reduction of root-mean-square error (RMSE) compared with the original IMERG in a humid area, i.e., the Dongjiang River Basin (DJR) in southeastern China. The improvements are even greater in a semi-arid area, i.e., the Fenhe River Basin (FHR) in central China, the RMSE reduction ranges from 63%-66%. The products generated by the machine learning methods performs similarly to or even outperform than the final run of IMERG. Feature importance analysis, a technique to evaluate input features based on how useful they are in predicting a target variable, indicates that the cloud height and the brightness temperature are the most useful information in improving satellite precipitation products, followed by the atmospheric reflectivity and the surface temperature. This study shows that a more accurate NRT precipitation product can be produced by combining machine learning approaches and cloud information, which is of importance for hydrological applications that requires NRT precipitation information including flood monitoring.

2020 ◽  
Author(s):  
Ravindra Kumar Singh ◽  
Harsh Kumar Verma

Abstract The extensive usage of social media polarity analysis claims the need for real-time analytics and runtime outcomes on dashboards. In data analytics, only 30% of the time is consumed in modeling and evaluation stages and 70% is consumed in data engineering tasks. There are lots of machine learning algorithms to achieve a desirable outcome in prediction points of view, but they lack in handling data and their transformation so-called data engineering tasks, and reducing its time remained still challenging. The contribution of this research paper is to encounter the mentioned challenges by presenting a parallelly, scalable, effective, responsive and fault-tolerant framework to perform end-to-end data analytics tasks in real-time and batch-processing manner. An experimental analysis on Twitter posts supported the claims and signifies the benefits of parallelism of data processing units. This research has highlighted the importance of processing mentioned URLs and embedded images along with post content to boost the prediction efficiency. Furthermore, this research additionally provided a comparison of naive Bayes, support vector machines, extreme gradient boosting and long short-term memory (LSTM) machine learning techniques for sentiment analysis on Twitter posts and concluded LSTM as the most effective technique in this regard.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Kamel Mansouri ◽  
Neal F. Cariello ◽  
Alexandru Korotcov ◽  
Valery Tkachenko ◽  
Chris M. Grulke ◽  
...  

Abstract Background The logarithmic acid dissociation constant pKa reflects the ionization of a chemical, which affects lipophilicity, solubility, protein binding, and ability to pass through the plasma membrane. Thus, pKa affects chemical absorption, distribution, metabolism, excretion, and toxicity properties. Multiple proprietary software packages exist for the prediction of pKa, but to the best of our knowledge no free and open-source programs exist for this purpose. Using a freely available data set and three machine learning approaches, we developed open-source models for pKa prediction. Methods The experimental strongest acidic and strongest basic pKa values in water for 7912 chemicals were obtained from DataWarrior, a freely available software package. Chemical structures were curated and standardized for quantitative structure–activity relationship (QSAR) modeling using KNIME, and a subset comprising 79% of the initial set was used for modeling. To evaluate different approaches to modeling, several datasets were constructed based on different processing of chemical structures with acidic and/or basic pKas. Continuous molecular descriptors, binary fingerprints, and fragment counts were generated using PaDEL, and pKa prediction models were created using three machine learning methods, (1) support vector machines (SVM) combined with k-nearest neighbors (kNN), (2) extreme gradient boosting (XGB) and (3) deep neural networks (DNN). Results The three methods delivered comparable performances on the training and test sets with a root-mean-squared error (RMSE) around 1.5 and a coefficient of determination (R2) around 0.80. Two commercial pKa predictors from ACD/Labs and ChemAxon were used to benchmark the three best models developed in this work, and performance of our models compared favorably to the commercial products. Conclusions This work provides multiple QSAR models to predict the strongest acidic and strongest basic pKas of chemicals, built using publicly available data, and provided as free and open-source software on GitHub.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1813 ◽  
Author(s):  
Alexander L. Bowler ◽  
Serafim Bakalis ◽  
Nicholas J. Watson

Mixing is one of the most common processes across food, chemical, and pharmaceutical manufacturing. Real-time, in-line sensors are required for monitoring, and subsequently optimising, essential processes such as mixing. Ultrasonic sensors are low-cost, real-time, in-line, and applicable to characterise opaque systems. In this study, a non-invasive, reflection-mode ultrasonic measurement technique was used to monitor two model mixing systems. The two systems studied were honey-water blending and flour-water batter mixing. Classification machine learning models were developed to predict if materials were mixed or not mixed. Regression machine learning models were developed to predict the time remaining until mixing completion. Artificial neural networks, support vector machines, long short-term memory neural networks, and convolutional neural networks were tested, along with different methods for engineering features from ultrasonic waveforms in both the time and frequency domain. Comparisons between using a single sensor and performing multisensor data fusion between two sensors were made. Classification accuracies of up to 96.3% for honey-water blending and 92.5% for flour-water batter mixing were achieved, along with R2 values for the regression models of up to 0.977 for honey-water blending and 0.968 for flour-water batter mixing. Each prediction task produced optimal performance with different algorithms and feature engineering methods, vindicating the extensive comparison between different machine learning approaches.


2021 ◽  
pp. 1-33
Author(s):  
Stéphane Loisel ◽  
Pierrick Piette ◽  
Cheng-Hsien Jason Tsai

Abstract Modeling policyholders’ lapse behaviors is important to a life insurer, since lapses affect pricing, reserving, profitability, liquidity, risk management, and the solvency of the insurer. In this paper, we apply two machine learning methods to lapse modeling. Then, we evaluate the performance of these two methods along with two popular statistical methods by means of statistical accuracy and profitability measure. Moreover, we adopt an innovative point of view on the lapse prediction problem that comes from churn management. We transform the classification problem into a regression question and then perform optimization, which is new to lapse risk management. We apply the aforementioned four methods to a large real-world insurance dataset. The results show that Extreme Gradient Boosting (XGBoost) and support vector machine outperform logistic regression (LR) and classification and regression tree with respect to statistic accuracy, while LR performs as well as XGBoost in terms of retention gains. This highlights the importance of a proper validation metric when comparing different methods. The optimization after the transformation brings out significant and consistent increases in economic gains. Therefore, the insurer should conduct optimization on its economic objective to achieve optimal lapse management.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 547 ◽  
Author(s):  
Ahmed Elbeltagi ◽  
Nikul Kumari ◽  
Jaydeo K. Dharpure ◽  
Ali Mokhtar ◽  
Karam Alsafadi ◽  
...  

Drought is a fundamental physical feature of the climate pattern worldwide. Over the past few decades, a natural disaster has accelerated its occurrence, which has significantly impacted agricultural systems, economies, environments, water resources, and supplies. Therefore, it is essential to develop new techniques that enable comprehensive determination and observations of droughts over large areas with satisfactory spatial and temporal resolution. This study modeled a new drought index called the Combined Terrestrial Evapotranspiration Index (CTEI), developed in the Ganga river basin. For this, five Machine Learning (ML) techniques, derived from artificial intelligence theories, were applied: the Support Vector Machine (SVM) algorithm, decision trees, Matern 5/2 Gaussian process regression, boosted trees, and bagged trees. These techniques were driven by twelve different models generated from input combinations of satellite data and hydrometeorological parameters. The results indicated that the eighth model performed best and was superior among all the models, with the SVM algorithm resulting in an R2 value of 0.82 and the lowest errors in terms of the Root Mean Squared Error (RMSE) (0.33) and Mean Absolute Error (MAE) (0.20), followed by the Matern 5/2 Gaussian model with an R2 value of 0.75 and RMSE and MAE of 0.39 and 0.21 mm/day, respectively. Moreover, among all the five methods, the SVM and Matern 5/2 Gaussian methods were the best-performing ML algorithms in our study of CTEI predictions for the Ganga basin.


2020 ◽  
Author(s):  
Albert Morera ◽  
Juan Martínez de Aragón ◽  
José Antonio Bonet ◽  
Jingjing Liang ◽  
Sergio de-Miguel

Abstract BackgroundThe prediction of biogeographical patterns from a large number of driving factors with complex interactions, correlations and non-linear dependences require advanced analytical methods and modelling tools. This study compares different statistical and machine learning models for predicting fungal productivity biogeographical patterns as a case study for the thorough assessment of the performance of alternative modelling approaches to provide accurate and ecologically-consistent predictions.MethodsWe evaluated and compared the performance of two statistical modelling techniques, namely, generalized linear mixed models and geographically weighted regression, and four machine learning models, namely, random forest, extreme gradient boosting, support vector machine and deep learning to predict fungal productivity. We used a systematic methodology based on substitution, random, spatial and climatic blocking combined with principal component analysis, together with an evaluation of the ecological consistency of spatially-explicit model predictions.ResultsFungal productivity predictions were sensitive to the modelling approach and complexity. Moreover, the importance assigned to different predictors varied between machine learning modelling approaches. Decision tree-based models increased prediction accuracy by ~7% compared to other machine learning approaches and by more than 25% compared to statistical ones, and resulted in higher ecological consistence at the landscape level.ConclusionsWhereas a large number of predictors are often used in machine learning algorithms, in this study we show that proper variable selection is crucial to create robust models for extrapolation in biophysically differentiated areas. When dealing with spatial-temporal data in the analysis of biogeographical patterns, climatic blocking is postulated as a highly informative technique to be used in cross-validation to assess the prediction error over larger scales. Random forest was the best approach for prediction both in sampling-like environments as well as in extrapolation beyond the spatial and climatic range of the modelling data.


2020 ◽  
Author(s):  
Si-Qiao Liang ◽  
Jian-Xiong Long ◽  
Jingmin Deng ◽  
Xuan Wei ◽  
Mei-Ling Yang ◽  
...  

Abstract Asthma is a serious immune-mediated respiratory airway disease. Its pathological processes involve genetics and the environment, but it remains unclear. To understand the risk factors of asthma, we combined genome-wide association study (GWAS) risk loci and clinical data in predicting asthma using machine-learning approaches. A case–control study with 123 asthma patients and 100 healthy controls was conducted in Zhuang population in Guangxi. GWAS risk loci were detected using polymerase chain reaction, and clinical data were collected. Machine-learning approaches (e.g., extreme gradient boosting [XGBoost], decision tree, support vector machine, and random forest algorithms) were used to identify the major factors that contributed to asthma. A total of 14 GWAS risk loci with clinical data were analyzed on the basis of 10 times of 10-fold cross-validation for all machine-learning models. Using GWAS risk loci or clinical data, the best performances were area under the curve (AUC) values of 64.3% and 71.4%, respectively. Combining GWAS risk loci and clinical data, the XGBoost established the best model with an AUC of 79.7%, indicating that the combination of genetics and clinical data can enable improved performance. We then sorted the importance of features and found that the top six risk factors for predicting asthma were rs3117098, rs7775228, family history, rs2305480, rs4833095, and body mass index. Asthma-prediction models based on GWAS risk loci and clinical data can accurately predict asthma and thus provide insights into the disease pathogenesis of asthma. Further research is required to evaluate more genetic markers and clinical data and predict asthma risk.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Albert Morera ◽  
Juan Martínez de Aragón ◽  
José Antonio Bonet ◽  
Jingjing Liang ◽  
Sergio de-Miguel

Abstract Background The prediction of biogeographical patterns from a large number of driving factors with complex interactions, correlations and non-linear dependences require advanced analytical methods and modeling tools. This study compares different statistical and machine learning-based models for predicting fungal productivity biogeographical patterns as a case study for the thorough assessment of the performance of alternative modeling approaches to provide accurate and ecologically-consistent predictions. Methods We evaluated and compared the performance of two statistical modeling techniques, namely, generalized linear mixed models and geographically weighted regression, and four techniques based on different machine learning algorithms, namely, random forest, extreme gradient boosting, support vector machine and artificial neural network to predict fungal productivity. Model evaluation was conducted using a systematic methodology combining random, spatial and environmental blocking together with the assessment of the ecological consistency of spatially-explicit model predictions according to scientific knowledge. Results Fungal productivity predictions were sensitive to the modeling approach and the number of predictors used. Moreover, the importance assigned to different predictors varied between machine learning modeling approaches. Decision tree-based models increased prediction accuracy by more than 10% compared to other machine learning approaches, and by more than 20% compared to statistical models, and resulted in higher ecological consistence of the predicted biogeographical patterns of fungal productivity. Conclusions Decision tree-based models were the best approach for prediction both in sampling-like environments as well as in extrapolation beyond the spatial and climatic range of the modeling data. In this study, we show that proper variable selection is crucial to create robust models for extrapolation in biophysically differentiated areas. This allows for reducing the dimensions of the ecosystem space described by the predictors of the models, resulting in higher similarity between the modeling data and the environmental conditions over the whole study area. When dealing with spatial-temporal data in the analysis of biogeographical patterns, environmental blocking is postulated as a highly informative technique to be used in cross-validation to assess the prediction error over larger scales.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


2021 ◽  
Vol 10 (4) ◽  
pp. 199
Author(s):  
Francisco M. Bellas Aláez ◽  
Jesus M. Torres Palenzuela ◽  
Evangelos Spyrakos ◽  
Luis González Vilas

This work presents new prediction models based on recent developments in machine learning methods, such as Random Forest (RF) and AdaBoost, and compares them with more classical approaches, i.e., support vector machines (SVMs) and neural networks (NNs). The models predict Pseudo-nitzschia spp. blooms in the Galician Rias Baixas. This work builds on a previous study by the authors (doi.org/10.1016/j.pocean.2014.03.003) but uses an extended database (from 2002 to 2012) and new algorithms. Our results show that RF and AdaBoost provide better prediction results compared to SVMs and NNs, as they show improved performance metrics and a better balance between sensitivity and specificity. Classical machine learning approaches show higher sensitivities, but at a cost of lower specificity and higher percentages of false alarms (lower precision). These results seem to indicate a greater adaptation of new algorithms (RF and AdaBoost) to unbalanced datasets. Our models could be operationally implemented to establish a short-term prediction system.


Sign in / Sign up

Export Citation Format

Share Document