scholarly journals The Relationship between Intermodel Differences and Surface Energy Balance Complexity in the Rhône-Aggregation Intercomparison Project

2006 ◽  
Vol 7 (1) ◽  
pp. 81-100 ◽  
Author(s):  
S. Fox ◽  
A. J. Pitman ◽  
A. Boone ◽  
F. Habets

Abstract Six modes of complexity of the Chameleon land surface model (CHASM) are used to explore the relationship between the complexity of the surface energy balance (SEB) formulation and the capacity of the model to explain intermodel variations in results from the Rhône-Aggregation Intercomparison Project (Rhône-AGG). At an annual time scale, differences between models identified in the Rhône-AGG experiments in the partitioning of available energy and water at the spatial scale of the Rhône Basin can be reproduced by CHASM via variations in the SEB complexity. Only two changes in the SEB complexity in the model generate statistically significant differences in the mean latent heat flux. These are the addition of a constant surface resistance to the simplest mode of CHASM and the addition of tiling and temporally and spatially variable surface resistance to produce the most complex model. Further, the only statistically significant differences in runoff occur following the addition of a constant surface resistance to the simplest mode of CHASM. As the time scale is reduced from annual to monthly, specific mechanisms begin to dominate the simulations produced by each Rhône-AGG model and introduce parameterization-specific behavior that depends on the time evolution of processes operating on longer time scales. CHASM cannot capture all this behavior by varying the SEB complexity, demonstrating the contribution to intermodel differences by hydrology and snow-related processes. Despite the increasing role of hydrology and snow in simulating processes at finer time scales, provided the constant surface resistance is included, CHASM's modes perform within the range of uncertainty illustrated by other Rhône-AGG models on seasonal and annual time scales.

2016 ◽  
Vol 38 ◽  
pp. 548
Author(s):  
Paul Stoy ◽  
Tobias Gerken ◽  
Jose Fuentes ◽  
Rosa Nascimento dos Santos ◽  
Celso Von Randow ◽  
...  

The surface energy balance is rarely closed using the common half-hourly averaging period for turbulent fluxes as eddies of greater characteristic time scales often provide a non-trivial contribution to energy exchange. Here, we briefly discuss previous efforts to improve surfasse energy balance closure of a tropical rainforest ecosystem – the K34 site - and describe how measurements from the GoAmazon campaign can be used to improve our understanding of energy flux and storage in tropical canopies.


2014 ◽  
Vol 71 (2) ◽  
pp. 665-682 ◽  
Author(s):  
Fabienne Lohou ◽  
Edward G. Patton

Abstract The interactions surrounding the coupling between surface energy balance and a boundary layer with shallow cumuli are investigated using the National Center for Atmospheric Research’s large-eddy simulation code coupled to the Noah land surface model. The simulated cloudy boundary layer is based on the already well-documented and previously simulated 21 June 1997 case at the Atmospheric Radiation Measurement Southern Great Plains central facility. The surface energy balance response to cloud shading is highly nonlinear, leading to different partitioning between sensible and latent heat flux compared to the surface not impacted by cloud. The evaporative fraction increases by about 2%–3% in the presence of shallow cumuli at the regional scale but can increase by up to 30% at any individual location. As expected, the cloud’s reduction of solar irradiance largely controls the surface’s response. However, the turbulence and secondary circulations associated with the cloud dynamics increases the surface flux variability. Even though they are less than 1 km in horizontal scale, the cloud-induced surface heterogeneities impact the vertical flux of heat and moisture up to approximately 20% of the height of the subcloud layer zsl, higher than the surface layer’s typical extent. Above 0.2zsl, the cloud root tends to amplify the drying and the cooling of the subcloud layer. Near the entrainment zone, the cloud-induced latent heat flux increase and sensible heat flux decrease compensate each other with respect to total buoyancy and therefore do not significantly modify the subcloud-layer entrainment rate over large time scales.


2020 ◽  
Author(s):  
Simone Maria Stuenzi ◽  
Julia Boike ◽  
William Cable ◽  
Ulrike Herzschuh ◽  
Stefan Kruse ◽  
...  

Abstract. Boreal forests in permafrost regions make up around one-third of the global forest cover and are an essential component of regional and global climate patterns. Further, climatic change can trigger extensive ecosystem shifts such as the partial disappearance of near surface permafrost or changes to the vegetation structure and composition. Therefore, our aim is to understand how the interactions between the vegetation, permafrost, and the atmosphere stabilize the forests and the underlying permafrost. Existing model set-ups are often static or are not able to capture important processes such as the vertical structure or the leaf physiological properties. There is a need for a physically based model with a robust radiative transfer scheme through the canopy. A one-dimensional land surface model (CryoGrid) is adapted for the application in vegetated areas by coupling a multilayer canopy model (CLM-ml v0) and is used to reproduce the energy transfer and thermal regime at a study site (N 63.18946, E 118.19596) in mixed boreal forest in Eastern Siberia. We have in-situ soil temperature and radiation measurements, to evaluate the model and demonstrate the capabilities of a coupled multilayer forest-permafrost model to investigate the vertical exchange of radiation, heat, and water. We find that the forests exert a strong control on the thermal state of permafrost through changing the radiation balance and snow cover phenology. The forest cover alters the surface energy balance by inhibiting over 90 % of the solar radiation and suppressing turbulent heat fluxes. Additionally, our simulations reveal a surplus in longwave radiation trapped below the canopy, similar to a greenhouse, which leads to a comparable magnitude in storage heat flux to that simulated at the grassland site. Further, the end of season snow cover is three times greater at the forest site and the onset of the snow melting processes are delayed.


2020 ◽  
Vol 14 (5) ◽  
pp. 1555-1577
Author(s):  
Alexandra Giese ◽  
Aaron Boone ◽  
Patrick Wagnon ◽  
Robert Hawley

Abstract. Few surface energy balance models for debris-covered glaciers account for the presence of moisture in the debris, which invariably affects the debris layer's thermal properties and, in turn, the surface energy balance and sub-debris melt of a debris-covered glacier. We adapted the interactions between soil, biosphere, and atmosphere (ISBA) land surface model within the SURFace EXternalisée (SURFEX) platform to represent glacier debris rather than soil (referred to hereafter as ISBA-DEB). The new ISBA-DEB model includes the varying content, transport, and state of moisture in debris with depth and through time. It robustly simulates not only the thermal evolution of the glacier–debris–snow column but also moisture transport and phase changes within the debris – and how these, in turn, affect conductive and latent heat fluxes. We discuss the key developments in the adapted ISBA-DEB and demonstrate the capabilities of the model, including how the time- and depth-varying thermal conductivity and specific heat capacity depend on evolving temperature and moisture. Sensitivity tests emphasize the importance of accurately constraining the roughness lengths and surface slope. Emissivity, in comparison to other tested parameters, has less of an effect on melt. ISBA-DEB builds on existing work to represent the energy balance of a supraglacial debris layer through time in its novel application of a land surface model to debris-covered glaciers. Comparison of measured and simulated debris temperatures suggests that ISBA-DEB includes some – but not all – processes relevant to melt under highly permeable debris. Future work, informed by further observations, should explore the importance of advection and vapor transfer in the energy balance.


2021 ◽  
Vol 18 (2) ◽  
pp. 343-365
Author(s):  
Simone Maria Stuenzi ◽  
Julia Boike ◽  
William Cable ◽  
Ulrike Herzschuh ◽  
Stefan Kruse ◽  
...  

Abstract. Boreal forests in permafrost regions make up around one-third of the global forest cover and are an essential component of regional and global climate patterns. Further, climatic change can trigger extensive ecosystem shifts such as the partial disappearance of near-surface permafrost or changes to the vegetation structure and composition. Therefore, our aim is to understand how the interactions between the vegetation, permafrost and the atmosphere stabilize the forests and the underlying permafrost. Existing model setups are often static or are not able to capture important processes such as the vertical structure or the leaf physiological properties. There is a need for a physically based model with a robust radiative transfer scheme through the canopy. A one-dimensional land surface model (CryoGrid) is adapted for the application in vegetated areas by coupling a multilayer canopy model (CLM-ml v0; Community Land Model) and is used to reproduce the energy transfer and thermal regime at a study site (63.18946∘ N, 118.19596∘ E) in mixed boreal forest in eastern Siberia. An extensive comparison between measured and modeled energy balance variables reveals a satisfactory model performance justifying its application to investigate the thermal regime; surface energy balance; and the vertical exchange of radiation, heat and water in this complex ecosystem. We find that the forests exert a strong control on the thermal state of permafrost through changing the radiation balance and snow cover phenology. The forest cover alters the surface energy balance by inhibiting over 90 % of the solar radiation and suppressing turbulent heat fluxes. Additionally, our simulations reveal a surplus in longwave radiation trapped below the canopy, similar to a greenhouse, which leads to a magnitude in storage heat flux comparable to that simulated at the grassland site. Further, the end of season snow cover is 3 times greater at the forest site, and the onset of the snow-melting processes are delayed.


2019 ◽  
Author(s):  
Alexandra Giese ◽  
Aaron Boone ◽  
Patrick Wagnon ◽  
Robert Hawley

Abstract. Few surface energy balance models for debris-covered glaciers account for the presence of moisture in the debris, which invariably affects the debris layer's thermal properties and, in turn, the surface energy balance and sub-debris melt of a debris-covered glacier. We adapted the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface model within the SURFace EXternalisée (SURFEX) platform to represent glacier debris rather than soil. The new ISBA-DEBris model includes the varying content, transport, and state of moisture in debris with depth and through time. It robustly simulates not only the thermal evolution of the glacier-debris-snow column but also moisture transport and phase changes within the debris – and how these, in turn, affect conductive and latent heat fluxes. We discuss the key developments in the adapted ISBA-DEB and demonstrate the capabilities of the model, including how the time- and depth-varying thermal conductivity and specific heat capacity depend on evolving temperature and moisture. Sensitivity tests emphasize the importance of accurately constraining the roughness lengths and surface slope. Emissivity, in comparison to other tested parameters, has less of an effect on melt. ISBA-DEB builds on existing work to represent the energy balance of a supraglacial debris layer through time in its novel application of a land surface model to debris covered glaciers. Comparison of measured and simulated debris temperatures suggests that ISBA-DEB includes some – but not all – processes relevant to melt under highly permeable debris. Future work, informed by further observations, should explore the importance of advection and vapor transfer.


2021 ◽  
pp. 1-19
Author(s):  
Rebecca L. Stewart ◽  
Matthew Westoby ◽  
Francesca Pellicciotti ◽  
Ann Rowan ◽  
Darrel Swift ◽  
...  

Abstract Surface energy-balance models are commonly used in conjunction with satellite thermal imagery to estimate supraglacial debris thickness. Removing the need for local meteorological data in the debris thickness estimation workflow could improve the versatility and spatiotemporal application of debris thickness estimation. We evaluate the use of regional reanalysis data to derive debris thickness for two mountain glaciers using a surface energy-balance model. Results forced using ERA-5 agree with AWS-derived estimates to within 0.01 ± 0.05 m for Miage Glacier, Italy, and 0.01 ± 0.02 m for Khumbu Glacier, Nepal. ERA-5 data were then used to estimate spatiotemporal changes in debris thickness over a ~20-year period for Miage Glacier, Khumbu Glacier and Haut Glacier d'Arolla, Switzerland. We observe significant increases in debris thickness at the terminus for Haut Glacier d'Arolla and at the margins of the expanding debris cover at all glaciers. While simulated debris thickness was underestimated compared to point measurements in areas of thick debris, our approach can reconstruct glacier-scale debris thickness distribution and its temporal evolution over multiple decades. We find significant changes in debris thickness over areas of thin debris, areas susceptible to high ablation rates, where current knowledge of debris evolution is limited.


2020 ◽  
pp. 1-16
Author(s):  
Tim Hill ◽  
Christine F. Dow ◽  
Eleanor A. Bash ◽  
Luke Copland

Abstract Glacier surficial melt rates are commonly modelled using surface energy balance (SEB) models, with outputs applied to extend point-based mass-balance measurements to regional scales, assess water resource availability, examine supraglacial hydrology and to investigate the relationship between surface melt and ice dynamics. We present an improved SEB model that addresses the primary limitations of existing models by: (1) deriving high-resolution (30 m) surface albedo from Landsat 8 imagery, (2) calculating shadows cast onto the glacier surface by high-relief topography to model incident shortwave radiation, (3) developing an algorithm to map debris sufficiently thick to insulate the glacier surface and (4) presenting a formulation of the SEB model coupled to a subsurface heat conduction model. We drive the model with 6 years of in situ meteorological data from Kaskawulsh Glacier and Nàłùdäy (Lowell) Glacier in the St. Elias Mountains, Yukon, Canada, and validate outputs against in situ measurements. Modelled seasonal melt agrees with observations within 9% across a range of elevations on both glaciers in years with high-quality in situ observations. We recommend applying the model to investigate the impacts of surface melt for individual glaciers when sufficient input data are available.


Sign in / Sign up

Export Citation Format

Share Document