scholarly journals The Dynamics of Southern Ocean Storm Tracks

2015 ◽  
Vol 45 (3) ◽  
pp. 884-903 ◽  
Author(s):  
Christopher C. Chapman ◽  
Andrew McC. Hogg ◽  
Andrew E. Kiss ◽  
Stephen R. Rintoul

AbstractThe mechanisms that initiate and maintain oceanic “storm tracks” (regions of anomalously high eddy kinetic energy) are studied in a wind-driven, isopycnal, primitive equation model with idealized bottom topography. Storm tracks are found downstream of the topography in regions strongly influenced by a large-scale stationary meander that is generated by the interaction between the background mean flow and the topography. In oceanic storm tracks the length scale of the stationary meander differs from that of the transient eddies, a point of distinction from the atmospheric storm tracks. When the zonal length and height of the topography are varied, the storm-track intensity is largely unchanged and the downstream storm-track length varies only weakly. The dynamics of the storm track in this idealized configuration are investigated using a wave activity flux (related to the Eliassen–Palm flux and eddy energy budgets). It is found that vertical fluxes of wave activity (which correspond to eddy growth by baroclinic conversion) are localized to the region influenced by the standing meander. Farther downstream, organized horizontal wave activity fluxes (which indicate eddy energy fluxes) are found. A mechanism for the development of oceanic storm tracks is proposed: the standing meander initiates localized conversion of energy from the mean field to the eddy field, while the storm track develops downstream of the initial baroclinic growth through the ageostrophic flux of Montgomery potential. Finally, the implications of this analysis for the parameterization and prediction of storm tracks in ocean models are discussed.

2019 ◽  
Vol 49 (3) ◽  
pp. 867-884 ◽  
Author(s):  
Annie Foppert

AbstractThe dynamics of an oceanic storm track—where energy and enstrophy transfer between the mean flow and eddies—are investigated using observations from an eddy-rich region of the Antarctic Circumpolar Current downstream of the Shackleton Fracture Zone (SFZ) in Drake Passage. Four years of measurements by an array of current- and pressure-recording inverted echo sounders deployed between November 2007 and November 2011 are used to diagnose eddy–mean flow interactions and provide insight into physical mechanisms for these transfers. Averaged within the upper to mid-water column (400–1000-m depth) and over the 4-yr-record mean field, eddy potential energy is highest in the western part of the storm track and maximum eddy kinetic energy occurs farther away from the SFZ, shifting the proportion of eddy energies from to about 1 along the storm track. There are enhanced mean 3D wave activity fluxes immediately downstream of SFZ with strong horizontal flux vectors emanating northeast from this region. Similar patterns across composites of Polar Front and Subantarctic Front meander intrusions suggest the dynamics are set more so by the presence of the SFZ than by the eddy’s sign. A case study showing the evolution of a single eddy event, from 15 to 23 July 2010, highlights the storm-track dynamics in a series of snapshots. Consistently, explaining the eddy energetics pattern requires both horizontal and vertical components of W, implying the importance of barotropic and baroclinic processes and instabilities in controlling storm-track dynamics in Drake Passage.


2010 ◽  
Vol 67 (5) ◽  
pp. 1420-1437 ◽  
Author(s):  
Justin J. Wettstein ◽  
John M. Wallace

Abstract Month-to-month storm-track variability is investigated via EOF analyses performed on ERA-40 monthly-averaged high-pass filtered daily 850-hPa meridional heat flux and the variances of 300-hPa meridional wind and 500-hPa height. The analysis is performed both in hemispheric and sectoral domains of the Northern and Southern Hemispheres. Patterns characterized as “pulsing” and “latitudinal shifting” of the climatological-mean storm tracks emerge as the leading sectoral patterns of variability. Based on the analysis presented, storm-track variability on the spatial scale of the two Northern Hemisphere sectors appears to be largely, but perhaps not completely, independent. Pulsing and latitudinally shifting storm tracks are accompanied by zonal wind anomalies consistent with eddy-forced accelerations and geopotential height anomalies that project strongly on the dominant patterns of geopotential height variability. The North Atlantic Oscillation (NAO)–Northern Hemisphere annular mode (NAM) is associated with a pulsing of the Atlantic storm track and a meridional displacement of the upper-tropospheric jet exit region, whereas the eastern Atlantic (EA) pattern is associated with a latitudinally shifting storm track and an extension or retraction of the upper-tropospheric jet. Analogous patterns of storm-track and upper-tropospheric jet variability are associated with the western Pacific (WP) and Pacific–North America (PNA) patterns. Wave–mean flow relationships shown here are more clearly defined than in previous studies and are shown to extend through the depth of the troposphere. The Southern Hemisphere annular mode (SAM) is associated with a latitudinally shifting storm track over the South Atlantic and Indian Oceans and a pulsing South Pacific storm track. The patterns of storm-track variability are shown to be related to simple distortions of the climatological-mean upper-tropospheric jet.


2020 ◽  
Author(s):  
Matthew Priestley ◽  
Duncan Ackerley ◽  
Jennifer Catto ◽  
Kevin Hodges ◽  
Ruth McDonald ◽  
...  

<p>Extratropical cyclones are the leading driver of the day-to-day weather variability and wintertime losses for Europe. In the latest generation of coupled climate models, CMIP6, it is hoped that with improved modelling capabilities come improvements in the structure of the storm track and the associated cyclones. Using an objective cyclone identification and tracking algorithm the mean state of the storm tracks in the CMIP6 models is assessed as well as the representation of explosively deepening cyclones. Any developments and improvements since the previous generation of models in CMIP5 are discussed, with focus on the impact of model resolution on storm track representation. Furthermore, large-scale drivers of any biases are investigated, with particular focus on the role of atmosphere-ocean coupling via associated AMIP simulations and also the influence of large-scale dynamical and thermodynamical features.</p>


2013 ◽  
Vol 70 (6) ◽  
pp. 1603-1615 ◽  
Author(s):  
Takenari Kinoshita ◽  
Kaoru Sato

Abstract A companion paper formulates the three-dimensional wave activity flux (3D-flux-M) whose divergence corresponds to the wave forcing on the primitive equations. However, unlike the two-dimensional wave activity flux, 3D-flux-M does not accurately describe the magnitude and direction of wave propagation. In this study, the authors formulate a modification of 3D-flux-M (3D-flux-W) to describe this propagation using small-amplitude theory for a slowly varying time-mean flow. A unified dispersion relation for inertia–gravity waves and Rossby waves is also derived and used to relate 3D-flux-W to the group velocity. It is shown that 3D-flux-W and the modified wave activity density agree with those for inertia–gravity waves under the constant Coriolis parameter assumption and those for Rossby waves under the small Rossby number assumption. To compare 3D-flux-M with 3D-flux-W, an analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) data is performed focusing on wave disturbances in the storm tracks during April. While the divergence of 3D-flux-M is in good agreement with the meridional component of the 3D residual mean flow associated with disturbances, the 3D-flux-W divergence shows slight differences in the upstream and downstream regions of the storm tracks. Further, the 3D-flux-W magnitude and direction are in good agreement with those derived by R. A. Plumb, who describes Rossby wave propagation. However, 3D-flux-M is different from Plumb’s flux in the vicinity of the storm tracks. These results suggest that different fluxes (both 3D-flux-W and 3D-flux-M) are needed to describe wave propagation and wave–mean flow interaction in the 3D formulation.


2006 ◽  
Vol 63 (7) ◽  
pp. 1818-1839 ◽  
Author(s):  
Edmund K. M. Chang

Abstract In this paper, a nonlinear dry model, forced by fixed radiative forcing alone, has been constructed to simulate the Northern Hemisphere winter storm tracks. A procedure has been devised to iterate the radiative equilibrium temperature profile such that at the end of the iterations the model climate closely resembles the desired target climate. This iterative approach is applied to simulate the climatological storm tracks in January. It is found that, when the three-dimensional temperature distribution in the model resembles the observed distribution, the model storm tracks are much too weak. It is hypothesized that this is due to the fact that eddy development is suppressed in a dry atmosphere, owing to the lack of latent heat release in the ascending warm air. To obtain storm tracks with realistic amplitudes, the static stability of the target climate is reduced to simulate the enhancement in baroclinic energy conversion due to latent heat release. With this modification, the storm tracks in the model simulation closely resemble those observed except that the strength of the Atlantic storm track is slightly weaker than observed. The model, when used as a forecast model, also gives high-quality forecasts of the evolution of observed eddies. The iterative approach is applied to force the model to simulate climate anomalies associated with ENSO and the interannual variations of the winter Pacific jet stream/storm tracks. The results show that the model not only succeeds in simulating the climatology of storm tracks, but also produces realistic simulations of storm track anomalies when the model climate is forced to resemble observed climate anomalies. An extended run of the control experiment is conducted to generate monthly mean flow and storm track statistics. These statistics are used to build a linear statistical model relating storm track anomalies to mean flow anomalies. This model performs well when used to hindcast observed storm track anomalies based on observed mean flow anomalies, showing that the storm track/mean flow covariability in the model is realistic and that storm track distribution is not sensitive to the exact form of the applied forcings.


2014 ◽  
Vol 71 (9) ◽  
pp. 3427-3438 ◽  
Author(s):  
Takenari Kinoshita ◽  
Kaoru Sato

Abstract The large-scale waves that are known to be trapped around the equator are called equatorial waves. The equatorial waves cause mean zonal wind acceleration related to quasi-biennial and semiannual oscillations. The interaction between equatorial waves and the mean wind has been studied by using the transformed Eulerian mean (TEM) equations in the meridional cross section. However, to examine the three-dimensional (3D) structure of the interaction, the 3D residual mean flow and wave activity flux for the equatorial waves are needed. The 3D residual mean flow is expressed as the sum of the Eulerian mean flow and Stokes drift. The present study derives a formula that is approximately equal to the 3D Stokes drift for equatorial waves on the equatorial beta plane (EQSD). The 3D wave activity flux for equatorial waves whose divergence corresponds to the wave forcing is also derived using the EQSD. It is shown that the meridionally integrated 3D wave activity flux for equatorial waves is proportional to the group velocity of equatorial waves.


2007 ◽  
Vol 37 (9) ◽  
pp. 2267-2289 ◽  
Author(s):  
Richard G. Williams ◽  
Chris Wilson ◽  
Chris W. Hughes

Abstract Signatures of eddy variability and vorticity forcing are diagnosed in the atmosphere and ocean from weather center reanalysis and altimetric data broadly covering the same period, 1992–2002. In the atmosphere, there are localized regions of eddy variability referred to as storm tracks. At the entrance of the storm track the eddies grow, providing a downgradient heat flux and accelerating the mean flow eastward. At the exit and downstream of the storm track, the eddies decay and instead provide a westward acceleration. In the ocean, there are similar regions of enhanced eddy variability along the extension of midlatitude boundary currents and the Antarctic Circumpolar Current. Within these regions of high eddy kinetic energy, there are more localized signals of high Eady growth rate and downgradient eddy heat fluxes. As in the atmosphere, there are localized regions in the Southern Ocean where ocean eddies provide statistically significant vorticity forcing, which acts to accelerate the mean flow eastward, provide torques to shift the jet, or decelerate the mean flow. These regions of significant eddy vorticity forcing are often associated with gaps in the topography, suggesting that the ocean jets are being locally steered by topography. The eddy forcing may also act to assist in the separation of boundary currents, although the diagnostics of this study suggest that this contribution is relatively small when compared with the advection of planetary vorticity by the time-mean flow.


2009 ◽  
Vol 66 (9) ◽  
pp. 2539-2558 ◽  
Author(s):  
David James Brayshaw ◽  
Brian Hoskins ◽  
Michael Blackburn

Abstract Understanding and predicting changes in storm tracks over longer time scales is a challenging problem, particularly in the North Atlantic. This is due in part to the complex range of forcings (land–sea contrast, orography, sea surface temperatures, etc.) that combine to produce the structure of the storm track. The impact of land–sea contrast and midlatitude orography on the North Atlantic storm track is investigated through a hierarchy of GCM simulations using idealized and “semirealistic” boundary conditions in a high-resolution version of the Hadley Centre atmosphere model (HadAM3). This framework captures the large-scale essence of features such as the North and South American continents, Eurasia, and the Rocky Mountains, enabling the results to be applied more directly to realistic modeling situations than was possible with previous idealized studies. The physical processes by which the forcing mechanisms impact the large-scale flow and the midlatitude storm tracks are discussed. The characteristics of the North American continent are found to be very important in generating the structure of the North Atlantic storm track. In particular, the southwest–northeast tilt in the upper tropospheric jet produced by southward deflection of the westerly flow incident on the Rocky Mountains leads to enhanced storm development along an axis close to that of the continent’s eastern coastline. The approximately triangular shape of North America also enables a cold pool of air to develop in the northeast, intensifying the surface temperature contrast across the eastern coastline, consistent with further enhancements of baroclinicity and storm growth along the same axis.


2005 ◽  
Vol 18 (16) ◽  
pp. 3294-3316 ◽  
Author(s):  
Dennis P. Robinson ◽  
Robert X. Black

Abstract A comprehensive analysis of midlatitude intraseasonal variability in extended integrations of NASA GSFC general circulation models (GCMs) is conducted. This is approached by performing detailed intercomparisons of the representation of the storm tracks and anomalous weather regimes occurring during wintertime in the Atmospheric Model Intercomparison Project (AMIP)-type simulations of both the NASA–NCAR and a version of the Aries model used in NASA’s Seasonal-to-Interannual Prediction Project (NSIPP) model. The model-simulated statistics, three-dimensional structure, and dynamical characteristics of these phenomena are diagnosed and directly compared to parallel observational analyses derived from NCEP–NCAR reanalyses. A qualitatively good representation of the vertical structure of intraseasonal eddy kinetic energy (EKE) is provided by both models with maximum values of EKE occurring near 300 hPa. The main model shortcoming is an underestimation of EKE in the upper troposphere, especially for synoptic eddies in the NSIPP model. Nonetheless, both models provide a reasonable representation of the three-dimensional structure and dynamical characteristics of synoptic eddies. Discrepancies in the storm-track structures simulated by the models include an anomalous local minimum over the eastern Pacific basin. However, both GCMs faithfully reproduce the observed Pacific midwinter storm-track suppression. Interestingly, the NSIPP model also produces a midwinter suppression feature over the Atlantic storm track in association with the anomalously strong upper-level jet stream simulated by NSIPP in this region. The regional distribution of anomalous weather regime events is well simulated by the models. However, substantial structural differences exist between observed and simulated events over the North Pacific region. In comparison to observations, model events are horizontally more isotropic, have stronger westward vertical tilts, and are more strongly driven by baroclinic dynamics. The structure and dynamics of anomalous weather regimes occurring over the North Atlantic region are qualitatively better represented by the models. The authors suggest that model deficiencies in representing the zonally asymmetric climatological-mean flow field (particularly the magnitude and structure of the Pacific and Atlantic jet streams) help contribute to model shortcomings in (i) the strength and seasonal variability of the storm tracks and (ii) dynamical distinctions in the maintenance of large-scale weather regimes.


2000 ◽  
Vol 407 ◽  
pp. 235-263 ◽  
Author(s):  
OLIVER BÜHLER

Theoretical and numerical results are presented on the transport of vorticity (or potential vorticity) due to dissipating gravity waves in a shallow-water system with background rotation and bottom topography. The results are obtained under the assumption that the flow can be decomposed into small-scale gravity waves and a large-scale mean flow. The particle-following formalism of ‘generalized Lagrangian-mean’ theory is then used to derive an ‘effective mean force’ that captures the vorticity transport due to the dissipating waves. This can be achieved without neglecting other, non-dissipative, effects which is an important practical consideration. It is then shown that the effective mean force obeys the so-called ‘pseudomomentum rule’, i.e. the force is approximately equal to minus the local dissipation rate of the wave's pseudomomentum. However, it is also shown that this holds only if the underlying dissipation mechanism is momentum-conserving. This requirement has important implications for numerical simulations, and these are discussed.The novelty of the results presented here is that they have been derived within a uniform theoretical framework, that they are not restricted to small wave amplitude, ray-tracing or JWKB-type approximations, and that they also include wave dissipation by breaking, or shock formation. The theory is tested carefully against shock-capturing nonlinear numerical simulations, which includes the detailed study of a wavetrain subject to slowly varying bottom topography. The theory is also cross-checked in the appropriate asymptotic limit against recently formulated weakly nonlinear theories. In addition to the general finite-amplitude theory, detailed small-amplitude expressions for the main results are provided in which the explicit appearance of Lagrangian fields can be avoided. The motivation for this work stems partly from an on-going study of high-altitude breaking of internal gravity waves in the atmosphere, and some preliminary remarks on atmospheric applications and on three-dimensional stratified versions of these results are given.


Sign in / Sign up

Export Citation Format

Share Document