Drivers of biases in the extratropical storm tracks in CMIP6

Author(s):  
Matthew Priestley ◽  
Duncan Ackerley ◽  
Jennifer Catto ◽  
Kevin Hodges ◽  
Ruth McDonald ◽  
...  

<p>Extratropical cyclones are the leading driver of the day-to-day weather variability and wintertime losses for Europe. In the latest generation of coupled climate models, CMIP6, it is hoped that with improved modelling capabilities come improvements in the structure of the storm track and the associated cyclones. Using an objective cyclone identification and tracking algorithm the mean state of the storm tracks in the CMIP6 models is assessed as well as the representation of explosively deepening cyclones. Any developments and improvements since the previous generation of models in CMIP5 are discussed, with focus on the impact of model resolution on storm track representation. Furthermore, large-scale drivers of any biases are investigated, with particular focus on the role of atmosphere-ocean coupling via associated AMIP simulations and also the influence of large-scale dynamical and thermodynamical features.</p>

2007 ◽  
Vol 37 (9) ◽  
pp. 2267-2289 ◽  
Author(s):  
Richard G. Williams ◽  
Chris Wilson ◽  
Chris W. Hughes

Abstract Signatures of eddy variability and vorticity forcing are diagnosed in the atmosphere and ocean from weather center reanalysis and altimetric data broadly covering the same period, 1992–2002. In the atmosphere, there are localized regions of eddy variability referred to as storm tracks. At the entrance of the storm track the eddies grow, providing a downgradient heat flux and accelerating the mean flow eastward. At the exit and downstream of the storm track, the eddies decay and instead provide a westward acceleration. In the ocean, there are similar regions of enhanced eddy variability along the extension of midlatitude boundary currents and the Antarctic Circumpolar Current. Within these regions of high eddy kinetic energy, there are more localized signals of high Eady growth rate and downgradient eddy heat fluxes. As in the atmosphere, there are localized regions in the Southern Ocean where ocean eddies provide statistically significant vorticity forcing, which acts to accelerate the mean flow eastward, provide torques to shift the jet, or decelerate the mean flow. These regions of significant eddy vorticity forcing are often associated with gaps in the topography, suggesting that the ocean jets are being locally steered by topography. The eddy forcing may also act to assist in the separation of boundary currents, although the diagnostics of this study suggest that this contribution is relatively small when compared with the advection of planetary vorticity by the time-mean flow.


2009 ◽  
Vol 66 (9) ◽  
pp. 2539-2558 ◽  
Author(s):  
David James Brayshaw ◽  
Brian Hoskins ◽  
Michael Blackburn

Abstract Understanding and predicting changes in storm tracks over longer time scales is a challenging problem, particularly in the North Atlantic. This is due in part to the complex range of forcings (land–sea contrast, orography, sea surface temperatures, etc.) that combine to produce the structure of the storm track. The impact of land–sea contrast and midlatitude orography on the North Atlantic storm track is investigated through a hierarchy of GCM simulations using idealized and “semirealistic” boundary conditions in a high-resolution version of the Hadley Centre atmosphere model (HadAM3). This framework captures the large-scale essence of features such as the North and South American continents, Eurasia, and the Rocky Mountains, enabling the results to be applied more directly to realistic modeling situations than was possible with previous idealized studies. The physical processes by which the forcing mechanisms impact the large-scale flow and the midlatitude storm tracks are discussed. The characteristics of the North American continent are found to be very important in generating the structure of the North Atlantic storm track. In particular, the southwest–northeast tilt in the upper tropospheric jet produced by southward deflection of the westerly flow incident on the Rocky Mountains leads to enhanced storm development along an axis close to that of the continent’s eastern coastline. The approximately triangular shape of North America also enables a cold pool of air to develop in the northeast, intensifying the surface temperature contrast across the eastern coastline, consistent with further enhancements of baroclinicity and storm growth along the same axis.


2006 ◽  
Vol 63 (8) ◽  
pp. 1965-1981 ◽  
Author(s):  
G. Rivière ◽  
A. Joly

Abstract By using new theoretical results on perturbation growth in spatially and temporally complex quasigeostrophic flows, this paper investigates the role of the large-scale deformation field on extratropical cyclones and especially on their explosive growth in the jet-exit region. Theoretical ideas are tested by decomposing the atmospheric flow into a high- and a low-frequency part and by analyzing four-dimensional variational data assimilation (4DVAR) reanalysis data of the Fronts and Atlantic Storm-Track Experiment (FASTEX) during February 1997 as well as reanalysis data for the end of December 1999. Regions where the low-frequency deformation magnitude is greater than the absolute value of the low-frequency vorticity are shown to correspond to regions where synoptic disturbances at the same level tend to be located. These regions in the upper troposphere are intrinsically related to the horizontal inhomogeneities of the low-frequency large-scale upper-tropospheric jet but cannot be detected by looking separately at the deformation or vorticity. Transitions from one such large-scale region to the next furthermore can be accompanied by a sudden change of the dilatation axes orientation: this combination defines a barotropic critical region (BtCR). Reasons why a BtCR is a specific place where barotropic development is likely to occur are exposed. Two very differently located BtCR regions in two apparently similar zonal-like weather regimes are shown to be the preferred regions where synoptic eddies tend to cross the jet from the south to the north. BtCRs are also special regions where constructive association between barotropic and baroclinic processes is favored, indeed constrained to cooperate. This is illustrated through the detailed analysis of the last growth stage of Intensive Observation Period 17 (IOP17) of FASTEX. It happens precisely around a BtCR area located in the jet-exit region. Two processes explain this IOP17 development; one involves the barotropic generation rate resulting from the low crossing the BtCR and the other one is baroclinic interaction, which is strongly maintained far away from the baroclinicity maximum because of the new favorable baroclinic configuration resulting from the first process.


2010 ◽  
Vol 138 (7) ◽  
pp. 2499-2527 ◽  
Author(s):  
Clifford Mass ◽  
Brigid Dotson

Abstract The northwest United States is visited frequently by strong midlatitude cyclones that can produce hurricane-force winds and extensive damage. This article reviews these storms, beginning with a survey of the major events of the past century. A climatology of strong windstorms is presented for the area from southern Oregon to northern Washington State and is used to create synoptic composites that show the large-scale evolution associated with such storms. A recent event, the Hanukkah Eve Storm of December 2006, is described in detail, with particular attention given to the impact of the bent-back front/trough and temporal changes in vertical stability and structure. The discussion section examines the general role of the bent-back trough, the interactions of such storms with terrain, and the applicability of the “sting jet” conceptual model. A conceptual model of the evolution of Northwest windstorm events is presented.


2020 ◽  
Vol 33 (18) ◽  
pp. 7927-7943 ◽  
Author(s):  
Nicole Albern ◽  
Aiko Voigt ◽  
David W. J. Thompson ◽  
Joaquim G. Pinto

AbstractPrevious studies showed that global cloud-radiative changes contribute half or more to the midlatitude atmospheric circulation response to global warming. Here, we investigate the relative importance of tropical, midlatitude, and polar cloud-radiative changes for the annual-mean, wintertime, and summertime circulation response across regions in AMIP-like simulations. To this end, we study global warming simulations from the ICON model run with the cloud-locking method and prescribed sea surface temperatures, which isolate the impact of changes in atmospheric cloud-radiative heating. Tropical cloud changes dominate the global cloud impact on the 850 hPa zonal wind, jet strength, and storm track responses across most seasons and regions. For the jet shift, a more diverse picture is found. In the annual mean and DJF, tropical and midlatitude cloud changes contribute substantially to the poleward jet shift in all regions. The poleward jet shift is further supported by polar cloud changes across the Northern Hemisphere but not in the Southern Hemisphere. In JJA, the impact of regional cloud changes on the jet position is small, consistent with an overall small jet shift during this season. The jet shift can be largely understood via the anomalous atmospheric cloud-radiative heating in the tropical and midlatitude upper troposphere. The circulation changes are broadly consistent with the influence of cloud-radiative changes on upper-tropospheric baroclinicity and thus the mean potential energy available for conversion into eddy kinetic energy. Our results help to explain the jet response to global warming and highlight the importance of tropical and midlatitude cloud-radiative changes for this response.


2021 ◽  
Author(s):  
Kerry Black ◽  
Ioana Colfescu ◽  
Massimo Bollasina

<p>Midlatitude storm tracks are a key component of the global atmospheric circulation. Extratropical cyclones associated with and evolving along the storm tracks dominate the day‐to‐day weather variability in the mid-latitudes, and changes in storm track activity or location strongly impact regional climate variations. Baroclinic waves that form the storm tracks are also responsible for transporting much of the heat, moisture, and momentum poleward in the midlatitudes. Therefore, investigating how storm tracks may respond to future changes in anthropogenic forcing is of significant interest. Yet, while most of the studies have focused on the role of increased greenhouse gases and the associated response at the end of the 21<sup>st</sup> century, the role of anthropogenic aerosols has been comparatively less studied. Furthermore, identifying robust changes in the atmospheric circulation is challenging and a major source of uncertainty in climate projections given the variety of responses in different models. This study aims to address these two aspects, benefitting from the use of large ensembles of single forcing experiments for the historical period and the future under RCP8.5, which allow to better identify the contribution of internal variability and its interplay with external forcing. We will discuss changes of the northern hemisphere storm tracks over both the Atlantic and Pacific regions, disentangle the contribution of anthropogenic aerosol changes, and build a physical link with large-scale circulation and surface climate over the two-basins.</p>


2013 ◽  
Vol 70 (8) ◽  
pp. 2596-2613 ◽  
Author(s):  
Yohai Kaspi ◽  
Tapio Schneider

Abstract Transient and stationary eddies shape the extratropical climate through their transport of heat, moisture, and momentum. In the zonal mean, the transports by transient eddies dominate over those by stationary eddies, but this is not necessarily the case locally. In particular, in storm-track entrance and exit regions during winter, stationary eddies and their interactions with the mean flow dominate the atmospheric energy transport. Here it is shown that stationary eddies can shape storm tracks and control where they terminate by modifying local baroclinicity. Simulations with an idealized aquaplanet GCM show that zonally localized surface heating alone (e.g., ocean heat flux convergence) gives rise to storm tracks, which have a well-defined length scale that is similar to that of Earth's storm tracks. The storm tracks terminate downstream of the surface heating even in the absence of continents, at a distance controlled by the stationary Rossby wavelength scale. Stationary eddies play a dual role: within about half a Rossby wavelength downstream of the heating region, stationary eddy energy fluxes increase the baroclinicity and therefore contribute to energizing the storm track; farther downstream, enhanced poleward and upward energy transport by stationary eddies reduces the baroclinicity by reducing the meridional temperature gradients and enhancing the static stability. Transports both of sensible and latent heat (water vapor) play important roles in determining where storm tracks terminate.


2013 ◽  
Vol 26 (15) ◽  
pp. 5379-5396 ◽  
Author(s):  
Giuseppe Zappa ◽  
Len C. Shaffrey ◽  
Kevin I. Hodges

Abstract The ability of the climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) to simulate North Atlantic extratropical cyclones in winter [December–February (DJF)] and summer [June–August (JJA)] is investigated in detail. Cyclones are identified as maxima in T42 vorticity at 850 hPa and their propagation is tracked using an objective feature-tracking algorithm. By comparing the historical CMIP5 simulations (1976–2005) and the ECMWF Interim Re-Analysis (ERA-Interim; 1979–2008), the authors find that systematic biases affect the number and intensity of North Atlantic cyclones in CMIP5 models. In DJF, the North Atlantic storm track tends to be either too zonal or displaced southward, thus leading to too few and weak cyclones over the Norwegian Sea and too many cyclones in central Europe. In JJA, the position of the North Atlantic storm track is generally well captured but some CMIP5 models underestimate the total number of cyclones. The dynamical intensity of cyclones, as measured by either T42 vorticity at 850 hPa or mean sea level pressure, is too weak in both DJF and JJA. The intensity bias has a hemispheric character, and it cannot be simply attributed to the representation of the North Atlantic large-scale atmospheric state. Despite these biases, the representation of Northern Hemisphere (NH) storm tracks has improved since CMIP3 and some CMIP5 models are able of representing well both the number and the intensity of North Atlantic cyclones. In particular, some of the higher-atmospheric-resolution models tend to have a better representation of the tilt of the North Atlantic storm track and of the intensity of cyclones in DJF.


e-Finanse ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 67-76
Author(s):  
Piotr Bartkiewicz

AbstractThe article presents the results of the review of the empirical literature regarding the impact of quantitative easing (QE) on emerging markets (EMs). The subject is of interest to policymakers and researchers due to the increasingly larger role of EMs in the world economy and the large-scale capital flows occurring after 2009. The review is conducted in a systematic manner and takes into consideration different methodological choices, samples and measurement issues. The paper puts the summarized results in the context of transmission channels identified in the literature. There are few distinct methodological approaches present in the literature. While there is a consensus regarding the direction of the impact of QE on EMs, its size and durability have not yet been assessed with sufficient precision. In addition, there are clear gaps in the empirical findings, not least related to relative underrepresentation of the CEE region (in particular, Poland).


Author(s):  
Anne Nassauer

This book provides an account of how and why routine interactions break down and how such situational breakdowns lead to protest violence and other types of surprising social outcomes. It takes a close-up look at the dynamic processes of how situations unfold and compares their role to that of motivations, strategies, and other contextual factors. The book discusses factors that can draw us into violent situations and describes how and why we make uncommon individual and collective decisions. Covering different types of surprise outcomes from protest marches and uprisings turning violent to robbers failing to rob a store at gunpoint, it shows how unfolding situations can override our motivations and strategies and how emotions and culture, as well as rational thinking, still play a part in these events. The first chapters study protest violence in Germany and the United States from 1960 until 2010, taking a detailed look at what happens between the start of a protest and the eruption of violence or its peaceful conclusion. They compare the impact of such dynamics to the role of police strategies and culture, protesters’ claims and violent motivations, the black bloc and agents provocateurs. The analysis shows how violence is triggered, what determines its intensity, and which measures can avoid its outbreak. The book explores whether we find similar situational patterns leading to surprising outcomes in other types of small- and large-scale events: uprisings turning violent, such as Ferguson in 2014 and Baltimore in 2015, and failed armed store robberies.


Sign in / Sign up

Export Citation Format

Share Document