Vertical Profiles of the Wave-Induced Airflow above Ocean Surface Waves

2018 ◽  
Vol 48 (12) ◽  
pp. 2901-2922 ◽  
Author(s):  
Laurent Grare ◽  
Luc Lenain ◽  
W. Kendall Melville

AbstractAn analysis of coherent measurements of winds and waves from data collected during the ONR Southern California 2013 (SoCal2013) program from R/P FLIP off the coast of Southern California in November 2013 is presented. An array of ultrasonic anemometers mounted on a telescopic mast was deployed to resolve the vertical profile of the modulation of the marine atmospheric boundary layer by the waves. Spectral analysis of the data provides the wave-induced components of the wind velocity for various wind-wave conditions. Results show that the wave-induced fluctuations depend both on the spectral wave age and the normalized height , where c is the linear phase speed of the waves with wavenumber k and is the mean wind speed measured at the height z. The dependence on the spectral wave age expresses the sensitivity of the wave-induced airflow to the critical layer where . Across the critical layer, there is a significant change of both the amplitude and phase of the wave-induced fluctuations. Below the critical layer, the phase remains constant while the amplitude decays exponentially depending on the normalized height. Accounting for this double dependency, the nondimensionalization of the amplitude of the wave-induced fluctuations by the surface orbital velocity collapses all the data measured by the array of sonic anemometers, where a is the amplitude of the waves.

2013 ◽  
Vol 43 (10) ◽  
pp. 2156-2172 ◽  
Author(s):  
Laurent Grare ◽  
Luc Lenain ◽  
W. Kendall Melville

Abstract An analysis of coherent measurements of winds and waves from data collected during the Office of Naval Research (ONR) High-Resolution air–sea interaction (HiRes) program, from the Floating Instrument Platform (R/P FLIP), off the coast of northern California in June 2010 is presented. A suite of wind and wave measuring systems was deployed to resolve the modulation of the marine atmospheric boundary layer by waves. Spectral analysis of the data provided the wave-induced components of the wind velocity for various wind–wave conditions. The power spectral density, the amplitude, and the phase (relative to the waves) of these wave-induced components are computed and bin averaged over spectral wave age c/U(z) or c/u*, where c is the linear phase speed of the waves, U(z) is the mean wind speed measured at the height z of the anemometer, and u* is the friction velocity in the air. Results are qualitatively consistent with the critical layer theory of Miles. Across the critical height zc, defined such that U(zc) = c, the wave-induced vertical and horizontal velocities change significantly in both amplitude and phase. The measured wave-induced momentum flux shows that, for growing waves, less than 10% of the momentum flux at z ≈ 10 m is supported by waves longer than approximately 15 m. For older sea states, these waves are able to generate upward wave-induced momentum flux opposed to the overall downward momentum flux. The measured amplitude of this upward wave-induced momentum flux was up to 20% of the value of the total wind stress when Cp/u* > 60, where Cp is the phase speed at the peak of the wave spectrum.


1972 ◽  
Vol 54 (3) ◽  
pp. 427-448 ◽  
Author(s):  
J. A. Elliott

Measurements of static pressure and wave height are used to describe the waveinduced pressure field above generating sea waves. A large hump in the pressure spectra is observed at the wave frequencies. The amplitude of this hump increases and the rate of its vertical decay decreases as the mean wind speed increases. The phase difference between the pressure and the waves during active generation is about 135°, pressure lagging the waves, and does not change vertically for measurements at heights greater than the wave crests. In the present data, active wave generation appears to occur only when the wind at a height of 5 metres is greater than or about equal to twice the phase speed of the waves.


2014 ◽  
Vol 1 (1) ◽  
pp. 269-315
Author(s):  
J. P. McHugh

Abstract. Weakly nonlinear internal gravity waves are treated in a two-layer fluid with a set of nonlinear Schrodinger equations. The layers have a sharp interface with a jump in buoyance frequency approximately modelling the tropopause. The waves are periodic in the horizontal but modulated in the vertical and Boussinesq flow is assumed. The equation governing the incident wave packet is directly coupled to the equation for the reflected packet, while the equation governing transmitted waves is only coupled at the interface. Solutions are obtained numerically. The results indicate that the waves create a mean flow that is strong near and underneath the interface, and discontinuous at the interface. Furthermore, the mean flow has an oscillatory component with a vertical wavelength that decreases as the wave packet interacts with the interface.


1973 ◽  
Vol 58 (4) ◽  
pp. 727-735 ◽  
Author(s):  
Richard Haberman

A slightly stratified shear flow is considered when the effects of nonlinearity, viscosity and thermal diffusivity are in balance in the critical layer. Finite amplitude essentially non-diffusive neutral waves exist only if the mean temperature, velocity and vorticity profiles are distorted such that small jumps in these quantities occur across the critical layer.


2015 ◽  
Vol 22 (3) ◽  
pp. 259-274 ◽  
Author(s):  
J. P. McHugh

Abstract. Weakly nonlinear internal gravity waves are treated in a two-layer fluid with a set of nonlinear Schrodinger equations. The layers have a sharp interface with a jump in buoyancy frequency approximately modeling the tropopause. The waves are periodic in the horizontal but modulated in the vertical and Boussinesq flow is assumed. The equation governing the incident wave packet is directly coupled to the equation for the reflected packet, while the equation governing transmitted waves is only coupled at the interface. Solutions are obtained numerically. The results indicate that the waves create a mean flow that is strong near and underneath the interface, and discontinuous at the interface. Furthermore, the mean flow has an oscillatory component that can contaminate the wave envelope and has a vertical wavelength that decreases as the wave packet interacts with the interface.


2018 ◽  
Vol 48 (8) ◽  
pp. 1691-1708 ◽  
Author(s):  
Yasushi Fujiwara ◽  
Yutaka Yoshikawa ◽  
Yoshimasa Matsumura

AbstractThe present study performs a wave-resolving simulation of wind-driven currents under monochromatic surface gravity waves using the latest nonhydrostatic free-surface numerical model. Here, phase speed of the waves is set much greater than the current speed. Roll structures very similar to observed Langmuir circulations (LCs) appear in the simulation only when both waves and down-wave surface currents are present, demonstrating that the rolls are driven by the wave–current interaction. A vorticity analysis of simulated mean flow reveals that the rolls are driven by the torque associated with wave motion, which arises from a correlation between wave-induced vorticity fluctuation and the wave motion itself. Furthermore, it is confirmed that the wave-induced torque is very well represented by the curl of the vortex force (VF), that is, the vector product of mean vorticity and Stokes drift velocity. Therefore, it is concluded that the simulated rolls are LCs and that the wave effects are well represented by the VF expression in the present simulation. The present study further revisits the scaling assumptions made by previous studies that derived VF formulation and shows that there is disagreement among the previous studies regarding the applicability of VF formulation when the wave orbital velocity (proportional to the amplitude times the frequency) is much smaller than the mean flow velocity. The result from the present simulation shows that the VF expression is still valid even with such small wave amplitudes, as long as phase speed of the waves is much greater than the current speed.


1978 ◽  
Vol 88 (4) ◽  
pp. 623-639 ◽  
Author(s):  
S. A. Thorpe

The investigation of the effects which a changing mean flow has on a uniform train of internal gravity waves (Thorpe 1978a) is continued by considering waves in a uniformly accelerating stratified plane Couette flow with constant density gradient. Experiments reveal a change in the mode structure and phase distribution of the waves, and their eventual breaking near the boundary where the mean flow is greatest, the phase speed of the waves being positive. A linear numerical model is devised which accurately describes the waves up to the onset of their breaking, and this is used to investigate their energetics. The working of the Reynolds stress against the mean velocity gradient results in a very rapid transfer of energy from the waves to the mean flow, so that by the time breaking occurs only a small fraction of their initial energy remains for possible transfer into potential energy of the fluid.The consequences have important applications in oceanography and meteorology, to flow stability and flow generation, and explain some earlier laboratory observations.


2016 ◽  
Vol 33 (11) ◽  
pp. 2477-2497 ◽  
Author(s):  
Laurent Grare ◽  
Luc Lenain ◽  
W. Kendall Melville

AbstractMeasurements from the Campbell CSAT3 and Gill R3-50 anemometers were conducted in four different experiments, in laboratory and field environments. Consistent differences between these two sonic anemometers were observed. The data have revealed that the differences were strongly correlated with the wind direction. According to the datasets used, the CSAT3 was the anemometer whose measurements were more sensitive to the instrument’s orientation relative to the wind direction. While the mean wind speed and direction remained within the manufacturers’ specifications (a few percent for the wind speed and a few degrees for the wind direction), the estimates of the friction velocity from the CSAT3 differed from the R3-50 by up to 20%.


2009 ◽  
Vol 620 ◽  
pp. 313-332 ◽  
Author(s):  
K. H. CHRISTENSEN ◽  
E. TERRILE

We present a theoretical model for the wave-induced drift and horizontal deformation of an oil slick. The waves and the mean flow are coupled through the influence of the mean flow on the concentration of slick material, which in turn determines the damping rate of the waves and hence the transfer of momentum from the waves to the mean flow. We also briefly discuss a simplified version of the model that can be used when remote sensing data are available. With this simpler model the wave-induced forcing of the mean flow is obtained directly from observations of the wave field, hence knowledge of any specific slick properties is not required.


1967 ◽  
Vol 27 (3) ◽  
pp. 513-539 ◽  
Author(s):  
John R. Booker ◽  
Francis P. Bretherton

Internal gravity waves of small amplitude propagate in a Boussinesq inviscid, adiabatic liquid in which the mean horizontal velocity U(z) depends on height z only. If the Richardson number R is everywhere larger than 1/4, the waves are attenuated by a factor $\exp\{-2\pi(R - \frac{1}{4})^{\frac{1}{2}}\}$ as they pass through a critical level at which U is equal to the horizontal phase speed, and momentum is transferred to the mean flow there. This effect is considered in relation to lee waves in the airflow over a mountain, and in relation to transient localized disturbances. It is significant in considering the propagation of gravity waves from the troposphere to the ionosphere, and possibly in transferring horizontal momentum into the deep ocean without substantial mixing.


Sign in / Sign up

Export Citation Format

Share Document