Drift and deformation of oil slicks due to surface waves

2009 ◽  
Vol 620 ◽  
pp. 313-332 ◽  
Author(s):  
K. H. CHRISTENSEN ◽  
E. TERRILE

We present a theoretical model for the wave-induced drift and horizontal deformation of an oil slick. The waves and the mean flow are coupled through the influence of the mean flow on the concentration of slick material, which in turn determines the damping rate of the waves and hence the transfer of momentum from the waves to the mean flow. We also briefly discuss a simplified version of the model that can be used when remote sensing data are available. With this simpler model the wave-induced forcing of the mean flow is obtained directly from observations of the wave field, hence knowledge of any specific slick properties is not required.

2014 ◽  
Vol 1 (1) ◽  
pp. 269-315
Author(s):  
J. P. McHugh

Abstract. Weakly nonlinear internal gravity waves are treated in a two-layer fluid with a set of nonlinear Schrodinger equations. The layers have a sharp interface with a jump in buoyance frequency approximately modelling the tropopause. The waves are periodic in the horizontal but modulated in the vertical and Boussinesq flow is assumed. The equation governing the incident wave packet is directly coupled to the equation for the reflected packet, while the equation governing transmitted waves is only coupled at the interface. Solutions are obtained numerically. The results indicate that the waves create a mean flow that is strong near and underneath the interface, and discontinuous at the interface. Furthermore, the mean flow has an oscillatory component with a vertical wavelength that decreases as the wave packet interacts with the interface.


2015 ◽  
Vol 22 (3) ◽  
pp. 259-274 ◽  
Author(s):  
J. P. McHugh

Abstract. Weakly nonlinear internal gravity waves are treated in a two-layer fluid with a set of nonlinear Schrodinger equations. The layers have a sharp interface with a jump in buoyancy frequency approximately modeling the tropopause. The waves are periodic in the horizontal but modulated in the vertical and Boussinesq flow is assumed. The equation governing the incident wave packet is directly coupled to the equation for the reflected packet, while the equation governing transmitted waves is only coupled at the interface. Solutions are obtained numerically. The results indicate that the waves create a mean flow that is strong near and underneath the interface, and discontinuous at the interface. Furthermore, the mean flow has an oscillatory component that can contaminate the wave envelope and has a vertical wavelength that decreases as the wave packet interacts with the interface.


2015 ◽  
Vol 28 (23) ◽  
pp. 9332-9349 ◽  
Author(s):  
Liang Wu ◽  
Zhiping Wen ◽  
Renguang Wu

Abstract Part I of this study examined the modulation of the monsoon trough (MT) on tropical depression (TD)-type–mixed Rossby–gravity (MRG) and equatorial Rossby (ER) waves over the western North Pacific based on observations. This part investigates the interaction of these waves with the MT through a diagnostics of energy conversion that separates the effect of the MT on TD–MRG and ER waves. It is found that the barotropic conversion associated with the MT is the most important mechanism for the growth of eddy energy in both TD–MRG and ER waves. The large rotational flows help to maintain the rapid growth and tilted horizontal structure of the lower-tropospheric waves through a positive feedback between the wave growth and horizontal structure. The baroclinic conversion process associated with the MT contributes a smaller part for TD–MRG waves, but is of importance comparable to barotropic conversion for ER waves as it can produce the tilted vertical structure. The growth rates of the waves are much larger during strong MT years than during weak MT years. Numerical experiments are conducted for an idealized MRG or ER wave using a linear shallow-water model. The results confirm that the monsoon background flow can lead to an MRG-to-TD transition and the ER wave amplifies along the axis of the MT and is more active in the strong MT state. Those results are consistent with the findings in Part I. This indicates that the mean flow of the MT provides a favorable background condition for the development of the waves and acts as a key energy source.


2020 ◽  
Vol 12 (1) ◽  
pp. 1666-1678
Author(s):  
Mohammed H. Aljahdali ◽  
Mohamed Elhag

AbstractRabigh is a thriving coastal city located at the eastern bank of the Red Sea, Saudi Arabia. The city has suffered from shoreline destruction because of the invasive tidal action powered principally by the wind speed and direction over shallow waters. This study was carried out to calibrate the water column depth in the vicinity of Rabigh. Optical and microwave remote sensing data from the European Space Agency were collected over 2 years (2017–2018) along with the analog daily monitoring of tidal data collected from the marine station of Rabigh. Depth invariant index (DII) was implemented utilizing the optical data, while the Wind Field Estimation algorithm was implemented utilizing the microwave data. The findings of the current research emphasis on the oscillation behavior of the depth invariant mean values and the mean astronomical tides resulted in R2 of 0.75 and 0.79, respectively. Robust linear regression was established between the astronomical tide and the mean values of the normalized DII (R2 = 0.81). The findings also indicated that January had the strongest wind speed solidly correlated with the depth invariant values (R2 = 0.92). Therefore, decision-makers can depend on remote sensing data as an efficient tool to monitor natural phenomena and also to regulate human activities in fragile ecosystems.


2018 ◽  
Vol 839 ◽  
pp. 408-429 ◽  
Author(s):  
Jim Thomas ◽  
Oliver Bühler ◽  
K. Shafer Smith

Theoretical and numerical computations of the wave-induced mean flow in rotating shallow water with uniform potential vorticity are presented, with an eye towards applications in small-scale oceanography where potential-vorticity anomalies are often weak compared to the waves. The asymptotic computations are based on small-amplitude expansions and time averaging over the fast wave scale to define the mean flow. Importantly, we do not assume that the mean flow is balanced, i.e. we compute the full mean-flow response at leading order. Particular attention is paid to the concept of modified diagnostic relations, which link the leading-order Lagrangian-mean velocity field to certain wave properties known from the linear solution. Both steady and unsteady wave fields are considered, with specific examples that include propagating wavepackets and monochromatic standing waves. Very good agreement between the theoretical predictions and direct numerical simulations of the nonlinear system is demonstrated. In particular, we extend previous studies by considering the impact of unsteady wave fields on the mean flow, and by considering the total kinetic energy of the mean flow as a function of the rotation rate. Notably, monochromatic standing waves provide an explicit counterexample to the often observed tendency of the mean flow to decrease monotonically with the background rotation rate.


2018 ◽  
Vol 75 (1) ◽  
pp. 3-20 ◽  
Author(s):  
Nicholas J. Lutsko

An equatorial heat source mimicking the strong diabatic heating above the west Pacific is added to an idealized, dry general circulation model. For small (<0.5 K day−1) heating rates the responses closely match the expectations from linear Matsuno–Gill theory, though the amplitudes of the responses increase sublinearly. This “linear” regime breaks down for larger heating rates and it is found that this is because the stability of the tropical atmosphere increases. At the same time, the equatorial winds increasingly superrotate. This superrotation is driven by stationary eddy momentum fluxes by the waves excited by the heating and is damped by the vertical advection of low-momentum air by the mean flow and, at large heating rates, by the divergence of momentum by transient eddies. These dynamics are explored in additional experiments in which the equator-to-pole temperature gradient is varied. Very strong superrotation is produced when a large heating rate is applied to a setup with a relatively weak equator-to-pole temperature gradient, though there is no evidence that this is a case of “runaway” superrotation.


2021 ◽  
Vol 13 (17) ◽  
pp. 9897
Author(s):  
Jinhui Wu ◽  
Haoxin Li ◽  
Huawei Wan ◽  
Yongcai Wang ◽  
Chenxi Sun ◽  
...  

An explicit analysis of the impact for the richness of species of the vegetation phenological characteristics calculated from various remote sensing data is critical and essential for biodiversity conversion and restoration. This study collected long-term the Normalized Difference Vegetation Index (NDVI), the Leaf Area Index (LAI), the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), and the Fractional Vegetation Cover (FVC), and calculated the six vegetation phenological characteristic parameters: the mean of the growing season, the mean of the mature season, the mean of the withered season, the annual difference value, the annual cumulative value, and the annual standard deviation in the Xinjiang Uygur Autonomous Region. The relationships between the vegetation phenological characteristics and the species richness of birds and mammals were analyzed in spatial distribution. The main findings include: (1) The correlation between bird diversity and vegetation factors is greater than that of mammals. (2) For remote sensing data, FAPAR is the most important vegetation parameter for both birds and mammals. (3) For vegetation phenological characteristics, the annual cumulative value of the LAI is the most crucial vegetation phenological parameter for influencing bird diversity distribution, and the annual difference value of the NDVI is the most significant driving factor for mammal diversity distribution.


2012 ◽  
Vol 1 (33) ◽  
pp. 41
Author(s):  
Kian Yew Lim ◽  
Ole Secher Madsen ◽  
Hin Fatt Cheong

An experimental study involving near-orthogonal wave-current interaction in a wave basin is reported in this paper. Due to previous shortcomings associated with 2D bottom configurations, i.e. occurrence of ripple-induced turning of flows close to the bed, the present experiments were conducted with the bottom covered by closely packed ceramic marbles (mean diameter of 1.25cm). Three types of flows were generated over this bottom: current-alone, wave-alone and combined wave-current flow. For current-alone and wave-current cases, the log-profile analysis was used to resolve the equivalent Nikuradse sand grain roughness, kn, while the energy dissipation method was used to estimate kn for wave-alone case. The results show that kn obtained for current- and wave-alone tests is roughly 2.2 times the diameter of the marbles. For orthogonal wave-current flows, the kn value, when used in combination with the Grant-Madsen (GM) model to reproduce the experimental apparent roughness, is found to be smaller than the measured current-alone and wave-alone kn. Similar under-prediction of bottom roughness is also observed when the GM model is compared with a numerical study, thus supporting the conjecture that when the current is weak compared to the waves, simple theoretical models like GM are not sufficiently sensitive to the angle of wave-current interaction. Experiments with currents at angles of 60° and 120° to the wave direction yield apparent roughness smaller than the 90° case, which is counter-intuitive since one would expect the mean flow to experience a stronger wave-induced turbulence when it is more aligned with the wave direction. This result indicates a possible contamination from wave-induced mass transport to the mean flow profile for non-orthogonal combined flow cases, and therefore highlights the need for other alternatives to the log-profile analysis when attempting to resolve kn from current velocity profiles from combined wave-current flows.


2018 ◽  
Vol 19 (11) ◽  
pp. 1777-1791 ◽  
Author(s):  
Nicholas Dawson ◽  
Patrick Broxton ◽  
Xubin Zeng

Abstract Global snow water equivalent (SWE) products derived at least in part from satellite remote sensing are widely used in weather, climate, and hydrometeorological studies. Here we evaluate three such products using our recently developed daily 4-km SWE dataset available from October 1981 to September 2017 over the conterminous United States. This SWE dataset is based on gridded precipitation and temperature data and thousands of in situ measurements of SWE and snow depth. It has a 0.98 correlation and 30% relative mean absolute deviation with Airborne Snow Observatory data and effectively bridges the gap between small-scale lidar surveys and large-scale remotely sensed data. We find that SWE products using remote sensing data have large differences (e.g., the mean absolute difference from our SWE data ranges from 45.8% to 59.3% of the mean SWE in our data), especially in forested areas (where this percentage increases up to 73.5%). Furthermore, they consistently underestimate average maximum SWE values and produce worse SWE (including spurious jumps) during snowmelt. Three additional higher-resolution satellite snow cover extent (SCE) products are used to compare the SCE values derived from these SWE products. There is an overall close agreement between these satellite SCE products and SCE generated from our SWE data, providing confidence in our consistent SWE, snow depth, and SCE products based on gridded climate and station data. This agreement is also stronger than that between satellite SCE and those derived from the three satellite SWE products, further confirming the deficiencies of the SWE products that utilize remote sensing data.


2020 ◽  
Vol 50 (5) ◽  
pp. 1489-1507 ◽  
Author(s):  
Gunnar Voet ◽  
Matthew H. Alford ◽  
Jennifer A. MacKinnon ◽  
Jonathan D. Nash

AbstractTowed shipboard and moored observations show internal gravity waves over a tall, supercritical submarine ridge that reaches to 1000 m below the ocean surface in the tropical western Pacific north of Palau. The lee-wave or topographic Froude number, Nh0/U0 (where N is the buoyancy frequency, h0 the ridge height, and U0 the farfield velocity), ranged between 25 and 140. The waves were generated by a superposition of tidal and low-frequency flows and thus had two distinct energy sources with combined amplitudes of up to 0.2 m s−1. Local breaking of the waves led to enhanced rates of dissipation of turbulent kinetic energy reaching above 10−6 W kg−1 in the lee of the ridge near topography. Turbulence observations showed a stark contrast between conditions at spring and neap tide. During spring tide, when the tidal flow dominated, turbulence was approximately equally distributed around both sides of the ridge. During neap tide, when the mean flow dominated over tidal oscillations, turbulence was mostly observed on the downstream side of the ridge relative to the mean flow. The drag exerted by the ridge on the flow, estimated to for individual ridge crossings, and the associated power loss, thus provide an energy sink both for the low-frequency ocean circulation and the tidal flow.


Sign in / Sign up

Export Citation Format

Share Document